May 16th, 1:45 PM

Broad Repertoire of T Cell Autoreactivity Directly from Islets of Donors with Type 1 Diabetes (T1D)

Jenny Aurielle B. Babon
University of Massachusetts Medical School

Et al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cell Biology Commons, Immune System Diseases Commons, Immunology and Infectious Disease Commons, and the Translational Medical Research Commons

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
BROAD REPERTOIRE OF T CELL AUTOACTIVITY DIRECTLY FROM ISLETS OF DONORS WITH TYPE 1 DIABETES (T1D)

Jenny Aurielle B. Babon1, Megan E. DeNicola1, David M. Blodgett1, Thomas S. Buttrick3, René Maehr4, Rita Bottino5,6, Ali Naji7, John Kaddis8, Wassim Elyaman3, Eddie A. James9, Rachana Haliyur10, Marcela Brissova10, Lut Overbergh2, Chantal Mathieu2, Thomas Delong11, Kathryn Haskins11, Alberto Pugliiese12, Martha Campbell-Thompson13, Clayton Mathews13, Mark A. Atkinson13, Alvin C. Powers10,14,15, David M. Harlan1, Sally C. Kent1

1Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School; 2Laboratory for Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; 3Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; 4Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School; 5Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA; 6Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA; 7Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA; 8Department of Information Sciences, Beckman Research Institute, City of Hope, Duarte, CA; 9Benaroya Research Institute at Virginia Mason, Seattle, WA; 10Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; 11Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO; 12Diabetes Research Institute, University of Miami, Miami, FL; 13Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL; 14Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN; 15VA Tennessee Valley Healthcare System, Nashville, TN

Type 1 diabetes (T1D) is an autoimmune disease characterized by the infiltration of lymphocytes into the insulin-producing β-cells in the pancreas. We have isolated live T cells sorted or grown directly from the isolated, handpicked islets of human donors with T1D. We received ~500 islet equivalent EQ of variable purity (10-90\%) from 12 donors with T1D (disease duration 0.42-20 years) and from seven control donors and two donors with type 2 diabetes (T2D). A total of 321 T cell lines and clones were derived from the islets of donors with T1D (3 lines from the 9 control donors). These are 131 CD4+ lines and clones, 47 CD8+ lines and 143 lines that contain both CD4+ and CD8+ T cells. From 50 lines and clones examined to date, we have determined the autoreactivity of 19 and have seen a broad repertoire of T cell autoreactivity in the islets, including characterized targets and post-translationally modified targets. Autoreactivity of CD4+ T cell lines was to three different peptides from glutamic acid decarboxylase 65 (GAD; GAD\textsubscript{115-127}, GAD\textsubscript{274-286}, GAD\textsubscript{555-567}), proinsulin\textsubscript{76-90}, and to chromogranin A or proinsulin expressed by DR\textsubscript{4}+DQ\textsubscript{8}+ B cells transduced with lentivirus containing constructs with the open reading frames corresponding to whole autoantigens. Reactivity to modified peptides included the glucose-regulated protein 78 and islet amyloid polypeptide with arginine to citrulline modifications (GRP\textsubscript{78}292-305(Arg-Cit297) and IAPP\textsubscript{65-84}(Arg-Cit 73, 81)), deaminations (IA-2\textsubscript{545-562}(Gln-Glu 548, 551, 556), and to several insulin hybrid peptides. These autoreactive CD4+ T cell lines and clones secreted only pro-inflammatory cytokines (IFN-γ, TNFα) upon peptide stimulation. For CD8+ T cells from islets, from one donor with T1D, we saw binding of a pool of HLA-A2 pentamers loaded with insulin B\textsubscript{10-18}, IA-2\textsubscript{797-805} and insulin specific glucose-6-phosphatase catalytic subunit related protein, IGRP\textsubscript{265-273}. These results have implications for the development of successful prevention and reversal therapeutic strategies in T1D.

Contact:
Jenny Aurielle B. Babon, Ph.D.
University of Massachusetts Medical School
Jenny.babon@umassmed.edu