May 16th, 1:45 PM

InVitro-Q: A High-throughput Biosensor Used to Evaluate the Mechanism of Phagocytosis of Macrophages Using Different Particles

Marynawal Abdou
Invitrometrix

Abiche H. Dewilde
Invitrometrix

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biomedical Engineering and Bioengineering Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, and the Translational Medical Research Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
INVITRO-Q: A HIGH-THROUGHPUT BIOSENSOR USED TO EVALUATE THE MECHANISM OF PHAGOCYTOSIS OF MACROPHAGES USING DIFFERENT PARTICLES

Marynawal Abdou and Abiche Dewilde, PhD
InVitroMetrix Corporation, Lowell MA

The method of phagocytosis of a particle can provide information on how macrophages respond to a detected particle. The response elicited varies based on the nature of the particle and in turn changes which receptor-mediated phagocytosis is initiated. We have developed a multi-well cell-based sensor that can monitor real-time biological changes in living cells, such as mass redistribution, and viscoelasticity. This system provides unique kinetic information regarding the phenotypic change in the cells post treatment. As a proof of principle study, we evaluate macrophage phagocytosis using three different particles: latex beads, Zymosan A, and Staphylococcus aureus. These studies show the InVitro-Q’s ability to distinguish and differentiate the unique physiological method of macrophage phagocytosis of an indigestible particle (latex beads), and digestible particles of different origins (Zymosan A (yeast cell wall) and S. aureus (wood bacteria). The real-time data generated illustrates the unique phenotypic signatures of macrophages in response to particle specific phagocytosis. The traces then dictate time points at which visualization will occur, and guides the elucidation of the mechanism of action.

Contact:
Abiche H. Dewilde, PhD
President
Invitrometrix, Lowell, MA
Email: AbicheD@Invitrometrix.com
Web: www.Invitrometrix.com