May 20th, 12:30 PM

Structural and Molecular Analysis of a Protective Epitope of Lyme Disease Antigen OspA and Antibody Interactions

Shivender Shandilya
University of Massachusetts Medical School

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Bacterial Infections and Mycoses Commons, Biochemistry Commons, Biological Factors Commons, Immunity Commons, Immunology of Infectious Disease Commons, Molecular Biology Commons, and the Structural Biology Commons

Repository Citation

Creative Commons License

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](https://creativecommons.org/licenses/by-nc-sa/3.0/). This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Structural and Molecular Analysis of a Protective Epitope of Lyme Disease Antigen OspA and Antibody Interactions

Shivender Shandilya, PhD1, Nese KurtYilmaz, PhD1, Ejemel Monir, BS2, Andrew Sadowski, BS2, William D. Thomas, Jr., PhD2, Mark S. Klempner, MD2, Celia A. Schiffer, PhD1*, Yang Wang, MD PhD2*

1Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Boston, Massachusetts, USA
2MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
*Co-corresponding authors and Co-PIs for NHMPP award

E-mails: Celia.Schiffer@umassmed.edu; Yang.Wang@umassmed.edu

Abstract

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease.

Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 based on computational predictions on the crystal structure of the complex, and experimentally tested for in-vitro binding and borreliacidal activity. We find that Y32 and H49 on the LA-2 light chain, N52 on the LA-2 heavy chain and residues A208, N228 and N251 on OspA were the key constituents of OspA/LA-2 interface. These results reveal specific residues that may be exploited to modulate recognition of the protective epitope of OspA and have implications for design of vaccines against Lyme disease.

Yang Wang, M.D Ph.D
Senior Director, Product Discovery
Assistant Professor of Medicine
T 617-474-4091
F 617-474-5354
617-474-5354
460 Walk Hill Street
Boston, MA 02126
www.umassmed.edu/massbiologics

yang.wang@umassmed.edu