InVitroMetrix QCM-Based Cell Biosensor: Research tool to accelerate pharmaceutical drug discovery success

Abiche H. Dewilde
University of Massachusetts Lowell

May 20th, 11:15 AM

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Chemicals and Drugs Commons, Investigative Techniques Commons, Medicinal and Pharmaceutical Chemistry Commons, and the Pharmaceuticals and Drug Design Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
QCM-Based Cell Biosensor

Research tool to accelerate pharmaceutical drug discovery success

Abiche H. Dewilde Ph.D.
UMass Lowell
Disclosure

• Grant/Research Support: Army Research Labs
• Major Shareholder: InVitroMetrix
 – President of InVitroMetrix
The research

- We wanted to measure in real time the changes that were happening with cells
 - Nanocanary

Analytes
- Drugs
- Vitamin
- Pollutant
- Chemical

Bio-Element
- Cell
- Enzyme
- Antibody
- Microbe

Sensed Property
- Mass
- Viscoelasticity
- Temperature

Transducer
- Piezoelectric
- Optical
- Thermal
- MEMS

Quantifiable signal

Piezoelectric: Quartz Crystal Microbalance (QCM)
Optical: Surface Plasmon Resonance (SPR)
Whole Cell Quartz Crystal Microbalance

Living whole cell biosensor

Measurable changes in cellular biomechanics: attachment, mass redistribution, viscoelasticity
The problem

The chemist tool
Prototypes V1 and V2

PROBLEM = ONLY ONE WELL
Prototype Concept 2
Prototype V3

PROBLEM = WEAK CONNECTIONS
Prototype V4

INNOVATION = CAN WE HAVE 12 WELLS?
The solution - Invitro-Q™

Integrated system

Data acquisition system 6”x4”

Invitro-Q™ x12

Cell culture wells

Personal Computer, Cloud, Smartphone

Calibrated to each other and to standard
Commercialization Research

• LOCK DOWN YOUR IP

• Competitive edge
The competition

• Micro Analysis Systems - Biacore (SPR)
 – Problem: single component systems

http://www.nature.com/nrd/journal/v1/n7/full/nrd838.html
Commercialization Research

• LOCK DOWN YOUR IP
• Competitive edge= We can do whole cells
• Market size= Can we be profitable
• Customer needs= TALK TO THE USERS
• Value proposition
 – The User= 12 wells
 – Who will buy it=> Savings to company?
 • INVESTORS: they want to see this
Value Proposition
Drug discovery and orphan drugs

• Cell assays are more successful at identifying first in class small molecule drugs

• Orphan drug repurposing $10M/2-3yrs ➞ $100K/4-6mo

1 Drug discovery today http://dx.doi.org/10.1016/j.drudis.2013.07.001
Commercialization Research

- Competitive edge
- Market size
- Customer needs
- Value proposition
- Go to market strategy
 - FORM THE COMPANY
Formation

• Legal paperwork
 – Entity, EIN, DUNS, SAM, NSF/NIH, Bank Accounts

• The Team
 – Diverse team with different expertise

• Find a research location

• Ask/convince Scientific Advisors to join

• Find wonderful mentors

• GET THE MONEY

• Get the prototype into people’s hands
Up Next

- Move to our new lab
- Finalize the product
- Validation
- Release first product
- Start researching next designs - SBIR/NSF
- More Money!
Thank you

Abiche H. Dewilde Ph.D.

abiched@invitrometrix.com

Invitrometrix.com