Ablation Of Raf-1 Kinase Inhibitory Protein (RKIP) Improves Photoreceptor Structure and Function in a Cep290-Mutant Mouse Model Of Severe Retinal Degeneration

Balajikarthick Subramanian
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cellular and Molecular Physiology Commons, Eye Diseases Commons, Ophthalmology Commons, and the Translational Medical Research Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Let us know how access to this document benefits you.
Ablation Of Raf-1 Kinase Inhibitory Protein (RKIP) Improves Photoreceptor Structure and Function in a Cep290-Mutant Mouse Model Of Severe Retinal Degeneration

Balajikarthick Subramanian, Manisha Anand, and Hemant Khanna

Department of Ophthalmology, UMASS Medical School, Worcester, MA 01605

Purpose: Mutations in the CEP290 gene are a frequent cause of childhood blindness disorder, Leber congenital amaurosis (LCA). Not much is known about the mode of action of CEP290 in the retina. We previously showed that CEP290 interacts with RKIP and that RKIP protein is abnormally accumulated in rd16 (retinal degeneration 16) mouse, a model of Cep290-associated retinal degeneration. The purpose of this study is to evaluate the role of RKIP accumulation in mediating photoreceptor degeneration in the rd16 mouse.

Methods: rd16/rd16:Rkip ko/Rkip ko double homozygous knock out mice were generated by breeding rd16 and Rkip ko mice (both on C57BL6/J background). Photoreceptor structure and function were evaluated by Histology, Transmission electron microscopy (TEM), Immunofluorescence microscopy and Electroretinography (ERG).

Results: We detected improved photoreceptor structure in the double homozygous mutant mice compared to rd16 at postnatal day 18 (P18). In addition, Rhodopsin and M-opsin staining in Rd16 Rkip⁻/⁻ mouse showed increased outer segment localization in the double mutant mice. Finally, ERG analysis showed 40% scotopic response recovery in Rd16 Rkip⁻/⁻ from Rd16 mouse.

Conclusions: We propose that accumulation of RKIP due to mutation in CEP290, although not the only pathway is a critical step in the pathogenesis of associated severe retinal degeneration. Altering RKIP levels may potentially be used in combination with other modalities as an approach for treating such disorders.