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RESEARCH Open Access

Telomere length dynamics in human memory
T cells specific for viruses causing acute or
latent infections
Joel M O'Bryan1, Marcia Woda1, Mary Co1, Anuja Mathew1* and Alan L Rothman2

Abstract

Background: Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory
T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in
healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in
situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring
acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus,
VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples
separated by up to 10 years.

Results: VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most
virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long
telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one
subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of
longer TL cells from the naïve T cell repertoire.

Conclusions: TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct
virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long
TL memory T cells could be important for the persistence of long-lived T cell memory.

Keywords: Ageing, Telomere, T cell memory, CD45RA, FlowFISH, Influenza A virus, Cytomegalovirus, Vaccinia virus,
Varicella zoster virus, BrdU labeling

Background
Virus-specific T cell proliferative responses are detect-
able for decades after the initial infection [1-3] but how
this T cell memory is established and maintained is not
clear. Telomere length (TL) has been shown to be a crit-
ical determinant of T cell replicative capacity and in vivo
persistence in humans; clinical trials have clearly shown
that adoptive transfer of minimally-expanded tumor-
infiltrating lymphocytes with long telomeres correlated
with better in vivo persistence and proliferation, while
excessive in vitro expansion prior to adoptive transfer

lead to shortened telomeres, and correlated with poor
in vivo persistence [4,5].
Low frequencies of virus-specific T cells and the lim-

ited number of known virus epitopes has restricted the
ex vivo study of TL mainly to CD8+ T cells specific for a
few immunodominant epitopes with more limited stud-
ies of CD4+ T cells [6-9]. Despite robust CD8+ T cell re-
sponses during a primary infection, CD4+ memory T cell
responses have been reported in some studies as more
durable than CD8+ T cell responses [2,10-12]. Differing
abilities of CD4+ and CD8+ T cells to up-regulate tel-
omerase during activation and thus enhance telomere
maintenance during this activation-induced proliferative
phase have been proposed to account for these differ-
ences [13].
Memory T cells turnover in vivo more rapidly than

naïve T cells [14-16]. However, T cells undergoing antigen-
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independent homeostatic proliferation do not express the
high levels of telomerase necessary to prevent replication-
driven TL erosion [17-19]. This increased memory T cell
turnover and lack of telomerase should theoretically lead
to the senescence and loss of the proliferative capacity of
memory T cells within a decade. On the other hand, peri-
odic antigen-driven reactivation of memory T cells specific
for recurrent or latent infections could drive additional
rounds of proliferation with expression of telomerase to
explain their continuing persistence [17,20], although other
data suggest that telomerase expression declines with each
round of activation [19]. But this explanation fails in the
face of reports of detectable poxvirus-specific T cells 5 to 6
decades after a smallpox vaccination, a situation where
there are no recurring exposures [2]. Recently, the demon-
stration in humans and non-human primates of the pres-
ence of a T cell memory subset with stem cell-like renewal
properties, termed TSCM cells, may provide a basis for the
persistence of very long-lived T cell memory [21,22]. A
substantially increased TL in this memory subset, relative
to more differentiated memory T cells, could provide a
mechanistic explanation for the in vivo longevity of the
TSCM cells.
Virus-specific memory T cells are maintained in vivo

under diverse conditions. Two common latent-reactivating
herpesviruses differ in their host interactions; cytomegalo-
virus (CMV) is thought to establish latency in a wide range
of tissues and cell types, especially myeloid cells, and may
reactivate frequently, whereas varicella-zoster virus (VZV)
establishes latency only in ganglionic neurons and reac-
tivates infrequently [23,24]. Nevertheless, both require life-
long T cell-mediated immunity for their control within
latently infected hosts [25,26]. Patterns of antigen expo-
sure also differ for acute viral infections, such as influenza
A virus (IAV), to which humans are likely repeatedly (sea-
sonally) exposed, and vaccinia virus (VACV), a poxvirus
with a quite limited exposure outside of the controlled
vaccination setting. We used in vitro BrdU labeling to de-
tect virus-specific memory T cells based on proliferation
in response to virus stimulation, and then used flow cy-
tometry fluorescence in situ hybridization (flowFISH) to
measure TLs in virus-specific (BrdU+) cells. Importantly,
flowFISH allows for the analysis of individual cells and
can be multiplexed with (a limited number of) cell pheno-
typic markers such as CD45RA [27].
We first developed and validated a modified flowFISH

TL assay on in vitro-expanded T cells by comparison with
Southern blotting telomere restriction fragment length
(TRF) results. We then performed a cross-sectional study
of 10 healthy adults, with 5 of these subjects providing se-
quential samples which allowed for a longitudinal study of
T cell TLs. Our results reveal diverse effects of virus re-
infection and reactivation on T cell TL and the mainten-
ance of T cell memory.

Results
FlowFISH analysis of T cell telomere length in
in vitro-expanded T cells
We sought to compare TL in memory T cells in healthy
adults specific for viruses causing acute (VACV, IAV) ver-
sus latent (VZV, CMV) infections. Since the frequency of
virus-specific memory T cells in PBMC is generally too
low in healthy humans for a robust TL analysis directly
ex vivo, we expanded PBMC in vitro with viral antigens.
To determine how this in vitro expansion may have af-
fected TL, we compared TL in total T cells isolated from
fresh PBMC to in vitro-expanded T cells using flowFISH
[28]. Initial flowFISH experiments revealed inflated TL
measurements in the in vitro expanded T cells (p<0.001,
Figure 1A left bars). However, these flowFISH-derived TL
estimates differed from TRF Southern blotting results
(compare Figure 1B with Figure 1A left bars), where the
TRF results were similar for the expanded T cells and
those analyzed ex vivo. This suggested that the inflated
flowFISH TL estimate was an assay artifact.
We therefore tested several modifications to the flow-

FISH protocol. Inclusion of a pre-hybridization fixation-
permeabilization step substantially reduced the inflated
telomere probe fluorescence, resulting in mean TL esti-
mates closer to the TRF results (Figure 1A middle bars).
We further added an RNase treatment step [29], in light of
reports that telomeres are transcribed and thus providing
additional targets for binding of the flowFISH telomere
peptide nucleic acid (PNA) probe [30,31]. We optimized
the RNase concentration and treatment times using a sep-
arate PNA probe to the 7SK small nuclear RNA [32] to en-
sure this protocol provided nuclease access to and digestion
of nuclear-localized RNAs (data not shown). The combi-
nation of these steps gave minimized background fluores-
cence for the Cy-5 labeled telomere probe (Additional 1:
Figure S1) and produced flowFISH TL estimates in agree-
ment with the TRF results (Figure 1A right bars).

TL measurement in T lymphocytes that proliferate to
viral antigens
Flow cytometry gating allowed discrimination of CD4+

T cell subsets and estimation of TL in each subset
(Figure 2A). Others have shown that the AlexaFluor® dyes
and related organic small molecule dyes survive the in situ
hybridization protocol and are useable, albeit with a some-
what reduced intensity, for flowFISH [33,34]. Although
the hybridization altered the intensity of CD4+ and CD8+

staining (Figure 2A, far right panel), the two primary T cell
subsets (CD4+CD8- versus CD4-CD8+) could be reprodu-
cibly defined (Additional 1: Figure S2). To identify T cells
that proliferated to virus antigen, we labeled cells with
BrdU during the final 72 h of a 7 day incubation and
stained with a fluorochrome-conjugated anti-BrdU anti-
body after telomere probe hybridization. The flowFISH
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protocol accommodated anti-BrdU staining as a post-
hybridization step (Figure 2A).
We determined the specificity of in vitro proliferation

to the viral antigens. It is difficult to identify subjects
who have not been exposed to IAV or VZV. For CMV,
seronegative status may not represent individuals who
are truly CMV naïve by more sensitive PCR methods [35];
in contrast most have limited exposure to VACV outside
of vaccination. Evidence for CMV-specific memory T cells
in CMV seronegative healthy adults has recently been
reported [36]. We therefore tested responses to VACV in
PBMC collected from five subjects prior to initial smallpox
vaccination to determine the specificity of the in vitro re-
sponse and provide insight to the background levels of
BrdU staining in negative controls. In these pilot studies,
CD4+ T cells in PBMC from all subjects readily responded
to IAV antigen, while responses to VACV antigen in PBMC
samples prior to vaccination with VACV were close to the
media-only control (Additional file 1: Figure S3). Accord-
ingly, we used a BrdU+ T cell frequency of 5-fold or higher
above the control culture of media-only background prolif-
eration as the criterion for a positive response. CD4+ T cells
from nine of our ten healthy adult subjects proliferated to

CMV antigen by this criteria; CD4+ T cells from all subjects
met this positive response criteria to IAV, VACV, and VZV
(Table 1). CD4+ and CD8+ responses from a typical subject
are shown in Figure 2B. Proliferative responses in CD8+ T
cells in these antigen-stimulated cultures were generally
lower; therefore the cross-sectional study results presented
here are limited to CD4+ T cell responses.
The use of CD45RA staining allowed for TL measure-

ment in the mostly naïve non-proliferated (CD45RA+

BrdUneg) T cell subsets as a point of reference for each
subject (Figure 2A). Although the CD45RA+ phenotype
does not exclusively identify naïve T cells, this marker
captures the naïve T cells, which typically form the ma-
jority of this phenotype in vivo in healthy young and
mid-life adults. Importantly for our use here, this BrdU-
CD45RA+ subset from the media-only control for each
donor provided a TL context to allow for a point of ref-
erence for each individual’s memory TL comparisons.
TL in CD45RA+ T cells cultured in vitro correlated well
with TL in CD45RA+ cells ex vivo (Additional 1: Figure
S4A). To evaluate the diversity in TL distribution in
each sample, the single-cell flowFISH enabled an evalu-
ation of median TL and the coefficient of variation (CV)

Figure 1 Telomere length (TL) measurement using flowFISH on proliferating T lymphocytes depends on fixation-permeabilization and
RNA nuclease treatment. PBMC from healthy adults were either stimulated with immobilized anti-CD3 and anti-CD28 for 4 days or were
cryopreserved on day 0 and thawed for processing on day 4; CD3+ T cells were magnetically sorted from both samples on day 4. Each sample
was divided for flowFISH TL analysis and telomere restriction fragment (TRF) Southern blotting. (A) FlowFISH analysis using 3 different
pre-hybridization conditions: without fixation-permeabilization prior to probe hybridization (no fix/perm), with fixation-permeabilization (Fix/Perm)
prior to hybridization, and with fixation-permeabilization followed by RNase treatment prior to hybridization (Fix/Perm +RNase). Statistical comparisons
were done using unpaired t-test, *** p<0.001, and ns=not significantly different. (B) TRF Southern blot analysis. DNA was extracted from CD3+ T cells
isolated ex vivo or after stimulation with anti CD3+CD28 for four days and subject to Southern Blot Analysis. TRF lengths are shown at the bottom of
both lanes and are the average of three separate 20 pixel-wide analyses using MatLab software running the MaTelo macro (see Methods).
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in addition to mean TL (Figure 2C). Replicate experi-
ments on the same PBMC samples showed that TL mea-
surements in proliferating (virus-specific) T cells were

highly reproducible (Additional 1: Figure S4B, C) even
when proliferation frequency differed slightly (Additional 1:
Figure S3C).

Figure 2 BrdU-flowFISH allows for TL measurement in proliferating CD4+ and CD8+ T lymphocytes. (A) Flow cytometry gating strategy for
TL measurement from probe mean fluorescence intensity (MFI) in BrdU+ CD4+ and CD8+ cells and in BrdU-negative naïve (CD45RA+) T cells.
(B) Representative proliferative responses (BrdU+ FSC-Ahigh population) of CD4+ and CD8+ T cells to viral antigen. Values shown are frequencies
of CD4+ or CD8+ T cells that were BrdU+. (C) Histograms of TL distribution for virus-specific CD4+ T cells defined as in B. Mean and median
fluorescence intensity values, in arbitrary units (AU), are shown for each plot. Coefficient of variation (CV) is also shown.
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TL and CD45RA+ frequencies in proliferating CD4+ T cells
Since TL declines in normal somatic cells as a result of
cell division in the absence of sufficient telomerase activ-
ity, it was important to understand the effects of in vitro
expansion on TL in virus-specific T cells. Prior to day 5,
BrdU+ cells were not detectable in antigen-stimulated
cultures above the levels in background (unstimulated)
cultures (data not shown). Starting at day 5, BrdU+ cells
represented a small but distinct population (Figure 3A).
However, day 5 and 6 cultures had T cell populations
with highly skewed TL distributions and low BrdU+ cell
numbers, which combined to produce a large variability
in mean TL (Figure 3B, and data not shown). In con-
trast, at day 7 of culture, TL distributions had converged
to more Gaussian distributions (Figure 3B) and were
reproducible between replicate cultures (Additional 1:
Figure S4C). Based on these experiments, we concluded
that reproducible measurements of TL in virus-specific T
cells could best be obtained at a 7-day culture, and that
proliferating, activated T cells maintained relatively stable,
reproducible TLs during at this time of activation-induced
expansion.
Previous work has shown that virus-specific CD8+ T

cells convert over several months after viral infection from
an early population of proliferating, CD45RA-/CD45RO+

effector T cells to mostly quiescent, CD45RA+ memory T
cells with a high replicative capacity [7,37]. Similar to
these results we found high CD45RA+ frequencies in the

proliferated BrdU+ CD4+ T cells at day 5 and 6, which de-
creased to day 7; the CD45RA- effector fraction rapidly in-
creased over the same period to become the dominant
phenotype of the BrdU+ population (Figure 3C).

CMV-specific and VACV-specific CD4+ T cells that
proliferated have longer mean telomere lengths than
similar IAV-specific CD4+ T cells
We performed a cross-sectional study of 10 healthy adult
subjects, who ranged in age from 26 to 61 years. Among
the four viruses studied, IAV stimulation produced, overall,
the highest frequency of BrdU+ CD4+ memory T cells
(Figure 4A). Frequencies of CD4+ T cells that proliferated
to CMV were generally lower than the other three viruses,
but were very high in two subjects. It must be noted that
the AD-169 laboratory strain of CMV used in this study
has a large genome deletion relative to wild-type CMV
[38], which could contribute to lower proliferation. How-
ever, the gamma-irradiated non-replicating virus used as
antigen still contains the wild-type virion structural pro-
teins, and T cell responses are directed against the tegu-
ment and capsid proteins.
We found a wide range of mean TL in naïve and virus-

specific CD4+ T cells in our study cohort (Figure 4B). In
pair-wise comparisons, VACV-specific CD4+ T cell TL
were significantly longer than IAV-specific CD4+ T cells,
in both absolute TL (p<0.01, Figure 4C) and as a ratio to
the subject’s naïve T cell TL (Figure 4D). Counter to our
expectation, we found that the CMV-specific CD4+ T cell
TL was also significantly longer than IAV-specific CD4+ T
cell TL (p<0.05) in both absolute TL and as a ratio to
naïve T cell TL. The TLs in proliferating T cells were not
merely an artifact of the amount in vitro expansion, since
we found no correlation between TL and the percent
BrdU+ cells (Figure 4E).

VACV-specific memory CD4+ T cells include a higher
frequency of CD45RA+ cells with long telomeres
We observed the consistent presence of CD4+ T cells with
long telomeres in the virus-specific cell populations, which
were predominately in the CD45RA+ gate (Figure 5A).
The CD45RA+ fraction typically constituted 5-15% of
virus-specific (BrdU+) cells at day 7 (Figures 3C and 5A),
and was skewed toward longer TLs compared to the
CD45RA- population (Figure 5A, B).
We compared the frequency of these long telomere

CD4+ CD45RA+ cells in the four virus-specific T cell pop-
ulations. For this analysis, we applied a consistent telo-
mere probe MFI cutoff value for each subject (Figure 5C).
We found that the frequencies of long telomere CD45RA+

cells were significantly greater in VACV-specific T cells
than in IAV-specific T cells (p=0.03, Figure 5D).

Table 1 CD4+ T cell proliferation responses in PBMC from
ten healthy donors

Fold increase in
proliferation*

% proliferation

Donor # Age/
Gender

Media CMV IAV VACV VZV

1 51/M 2.1 2.7 23.4 13.8 8.5

2 49/M 0.6 20.0 76.6 65.2 41.3

3 41/F 0.7 7.1 40.4 5.1 73.3

4 39/M 0.5 162.8 69.4 66.8 60.2

5 49/F 0.2 24.5 146.0 75.6 122.5

6 61/F 0.4 125.5 67.3 23.3 29.3

7 43/M 0.7 16.1 64.1 19.6 58.0

8 28/F 1.4 9.1 24.1 19.3 29.4

9 26/M 0.1 92.0 96.0 230.0 283.0

10 35/M 0.5 15.4 106.0 35.8 69.0

Number of +
responses

9 10 10 10

* Fold increase in proliferation is the ratio of the frequency of BrdU+ CD4+ T
cells in response to virus stimulation divided by the %BrdU+ frequency in
response to media.
Gender: M – male, F – female.
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negative selection (Pan T cell isolation kit II, Miltenyi
Biotec). Each cell sample was split into two aliquots, one
for TRF Southern blot analysis and the other for telomere
flowFISH (described below).

For TRF Southern blotting, DNA was extracted from
2 x 106 CD3+ T cells using the Wizard Genomic DNA
purification kit (Promega) which included an RNase di-
gestion step. These DNA preparations were digested

Figure 7 Reactivation associated with increased proliferative responses and restored TL in VZV-specific CD4+ and CD8+ T cells. Dot
plots show virus-specific (A) CD4+ and (B) CD8+ proliferative responses across three time points in the same subject. BrdU+ frequencies (percent)
are shown in the gate. PBMC were collected approximately two years prior (top row), two weeks after (middle row) or fourteen months after
(bottom row) VZV reactivation. Graphs depict mean TL in (C) CD4+ and (D) CD8+ T cells along with TL in naïve T cells (from media-only culture
BrdU-CD45RA+) (dashed line) across the three time points. (E) VZV-specific CD4+ and CD8+ T cell from A and B are further delineated by CD45RA
expression. (F) Mean TL for VZV-specific T cells by CD45RA expression shown in 4E. Error bars are standard errors from triplicate hybridizations of
the same sample. By unpaired t-test, *** p < 0.001, ** p < 0.01, ns = not different.
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overnight with HinfI and RsaI restriction enzymes (New
England BioLabs). Electrophoresis of one microgram of
digested DNA per lane was performed on a 0.8% TBS-
agarose gel with TBS running buffer. Biotinylated mo-
lecular weight markers were run in adjacent lanes. Gels
were depurinated, denatured, neutralized, and transferred
overnight to a neutral membrane. The membrane was UV
cross-linked and hybridized with a telomere G-strand-
specific, fluorescein-labeled peptide nucleic acid (PNA)
probe (FAM-OO-(CCCTAA)3, Panagene, South Korea).
After high stringency washes and blocking, the telomere
bands were developed and visualized using the Illumin-
ator Chemiluminescent Detection System (Stratagene).
The membrane was then stripped and the MW markers
were visualized using streptavidin-alkaline phosphatase
chemiluminescence. The two images were overlayed and
MW marks transferred to the telomere probe image, which
was then scanned at 1200 pixel per inch resolution. The
resulting scanned image was analyzed with the MatLab
(MathWorks) macro MATELO (http://md.technion.ac.il/
lecturers/lecturer_desc.asp?lecturerID=10&departmentID=
1&contentCatID=4) [44].

FlowFISH telomere length assay
TL was measured in PBMC subsets using a flowFISH assay
[28]. We incorporated RNA nuclease treatment prior to
probe hybridization, as previously described [29]. Here we
also included BrdU staining to identify cells that had prolif-
erated. Multiple wells from each in vitro stimulation condi-
tion were pooled. PBMC or purified CD3+ T cells (1.5 to
2.5 x 106 cells from each sample) were stained at 4°C with
Alexa700-anti-hCD4 and APC-eFluor780-anti-hCD8 (eBio
sciences, San Diego, CA) and washed. Stained PBMC were
treated for 20 min at 4°C with 1mM suberic acid bis (3-
sulfo-N-hydroxysuccinimide ester) sodium salt crosslinker.
Samples were then quenched for 15 min at 4°C with PBS
containing 50 mM Tris–HCl. Samples were fixed and per-
meabilized in a lithium phosphate-buffered, lithium chlor-
ide solution containing 0.1% bovine serum albumin (BSA),
4% formaldehyde, and 0.05% saponin (all from Sigma, St
Louis, MO) for 25 min at 4°C, and then washed once in
cold lithium-based buffer plus 0.05% saponin. Samples
were washed in lithium-based nuclease buffer and re-
suspended in lithium-based RNase buffer plus 0.05% sap-
onin and 20 units/mL RNase One (Promega) for two
hours at 37°C. Samples were then aliquoted to separate
hybridization tubes and washed with the lithium-based
wash buffer. Hybridization buffer (300 μL) consisted of 70%
formamide, 150 mM lithium chloride, 10 mM Tris–HCl
and 1% BSA. Probe(+) tubes received hybridization buf-
fer plus Cy5-OO-(CCCTAA)3-EE PNA probe (Panagene,
South Korea) at a concentration of 0.5 μg/mL. Probe(−)
tubes received hybridization buffer only. Samples were hy-
bridized in an 82°C water bath for 12 min. After overnight

cooling in the dark, samples were washed twice with 1 mL
of 70% formamide, 0.1% BSA, 150 mM sodium chloride
wash buffer, then once with 1 mL permeabilization wash
buffer (Perm/Wash, BD Biosciences). Samples were stained
with PE-Cy7-anti-hCD45RA and PE-anti-BrdU (BD Biosci-
ences) for 1 h at room temperature in perm-wash buffer.
Samples were washed twice and resuspended in PBS-BSA
containing 0.1 μg/mL of 4',6-diamidino-2-phenylindole
(DAPI) for flowFISH analysis.

Flow cytometry
All samples were analyzed on a FACS-Aria flow cytometer.
DNA content (using the DAPI signal) and telomere probe
signals were collected with linear amplification. A mini-
mum of 30,000 lymphocyte-gated events per tube were
collected. Linear calibration beads (RLP-30-5, Spherotech)
were run at the end of all experiments for conversion of
experimental mean fluorescence intensities (MFIs) to mol-
ecules of equivalent soluble fluorescence (MESF).

Data analysis
Flow cytometry data was analyzed using Flowjo v7.2.5 soft-
ware (Treestar, Ashland, OR). Cells were sequentially gated
to select for singlets, lymphocytes, 2n DNA content (G0G1

cells) and then CD4+ and CD8+ cell populations. Virus-
specific cells were defined by BrdU staining. For TL meas-
urement, the mean fluorescence intensity (MFI) of the
probe(−) tube for each sample was subtracted from the
MFI of the matching probe(+) tube to obtain a specific
MFI. Specific MFI values were converted to MESF using
the linear bead-derived best-fit equation; linear perform-
ance in the Cy5 (telomere probe) channel was verified
(r2>0.99) in all runs.

Statistical analysis
Statistical tests (Wilcoxon signed rank test, unpaired t test,
linear regression testing) were performed using Prism v5.0
(GraphPad Software). All statistical tests were two-tailed.
P values for linear regression tests use Pearson correlation
analysis. Linear regression equation slope and intercept
were computed by linear trend line fitting in MS Excel
(Microsoft).

Additional file

Additional file 1: Figure S1. A component of the flowFISH telomere
probe signal is sensitive to RNA nuclease treatment. Telomere lengths in
CD45RA+ T cells were measured by flowFISH. Specific MFI is the
difference between the average signal in triplicate Cy5-labeled probe (+)
tubes and the background fluorescence in the probe (-) tube. p values
were determined by Student’s t-test on triplicate hybridizations. Limit of
detection for mean fluorescence intensity (MFI) was 0.4 arbitrary units
(AU). Figure S2. Comparison of CD4 and CD8 staining with and without
in situ hybridization procedure. Top panels show CD4 x CD8 gating
without fluorescent in situ hybridization and the subsequent CD4+ BrdU+
population. The bottom panels show the same culture sample, but with
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in situ hybridization for telomere length measurement in the proliferated
BrdU+ cells. The CD4 and CD8 signals are reduced by in situ
hybridization, but still sufficient to allow discrimination of the BrdU+
population of proliferated T cells. Figure S3. CD4+ T cells in PBMC
samples obtained prior to vaccination do not proliferate in vitro in
response to VACV stimulation. PBMC were obtained from 5 VACV-naïve
donors prior to vaccination with VACV. Frequency shown is the percent
BrdU+ CD4+ T cells following stimulation with IAV, media-only, and VACV.
Figure S4. Reproducibility of TL measurements by flowFISH. (A)
Comparison of TL measured ex vivo by flowFISH versus in BrdUneg T cells
at day 7 of culture in three different subjects. (B) FlowFISH TL
measurements in virus-specific CD4+ T cells from the same subject in
two different experiments. (C) Intra-assay variability in TL measurement
with replicate IAV-stimulated cell cultures tested in the same experiment
(dotted and solid lines). Inset panel is the mean telomere probe
fluorescence and BrdU+ cell frequencies. Histograms represent
distribution of telomere length from diploid-gated BrdU+ CD4+ T cells.
AU= arbitrary units of fluorescence.
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