May 20th, 12:30 PM

Inhibition of Protein Tyrosine Phosphatase 1B by Polyphenol Natural Products: Relevant to Diabetes Management

Zhiwei Liu
University of Massachusetts Dartmouth

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biochemistry Commons, Nutritional and Metabolic Diseases Commons, Organic Chemicals Commons, and the Translational Medical Research Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Inhibition of protein tyrosine phosphatase 1B by polyphenol natural products: relevant to diabetes management

Zhiwei Liu and Maolin Guo (email: mguo@umassd.edu)

UMass Cranberry Health Research Center; Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, MA 02747 (email: mguo@umassd.edu)

Many biologically active polyphenols have been recognized for their beneficial effects in managing diabetes and their complications. However, the mechanisms behind their functions are poorly understood. As protein-tyrosine phosphatase 1B (PTP1B) has been identified as a target for anti-diabetic agents, the potential inhibitory effects of a dozen structurally diverse polyphenol natural products have been investigated. Among these polyphenols, potent inhibitory activities have been identified for 6 of them with IC$_{50}$ in micromolar range, while the other polyphenols showed very weak inhibition. A structure-activity relationship (SAR) study and molecular docking results suggest that both a rigid planar 3-ring backbone and appropriate substitutions of hydroxyl groups benefit the inhibitory activity. The mechanism of inhibition of PTP1B was further investigated by Michaelis-Menten kinetics and the inhibition mode for PTP1B was determined along with the inhibition constant.