RAPID COMMUNICATION

Deletion Variants Within the NF-κB Activation Domain of the LMP1 Oncogene Prevail in Acquired Immunodeficiency Syndrome-Related Large Cell Lymphomas and Human Immunodeficiency Virus-Negative Atypical Lymphoproliferations

By Hans Knecht, Martine Raphael, Cathy McQuain, Sylvia Rothenberger, German Pihan, Sophie Camilleri-Broët, Edith Bachmann, Glenn R. Kershaw, Shannon Ryan, Ellen L.W. Kittler, Peter J. Quesenberry, Daniel Schlaifer, Bruce A. Woda, and Pierre Brousset

This sequencing study of 17 acquired immunodeficiency syndrome-related lymphomas (9 primary brain, 8 systemic) and 8 human immunodeficiency virus-negative atypical lymphoproliferations expressing large amounts of the latent membrane protein 1 (LMP1) of Epstein-Barr virus was performed to characterize the carboxy terminal NF-κB activation domain of LMP1 at the molecular level in an immunocompromised host. In-frame deletions within the NF-κB activation domain were identified in all but 2 primary brain lymphomas, 4 systemic lymphomas, and 4 atypical lymphoproliferations, ie, in 60% of cases. In addition, non silent point mutations (range 1 to 5, mean 3.3) were detected in all cases.

Although all changes occurred within the first 100 nucleotides of the carboxy terminal NF-κB activation domain—a critical sequence for the protein half-life—not a single point mutation was found in the remaining 62 nucleotides, necessary for malignant transformation. Such a clustering of nonrandom sequence variations, associated with a high oncoprotein expression in immunocompromised hosts, suggests that this part of the LMP1 oncogene behaves as a hypervariable region with natural selection of growth-promoting variants through prolongation of the protein half-life.

© 1996 by The American Society of Hematology.

LMP1, an INTEGRAL membrane protein, encoded by the BNLFL1 gene of Epstein-Barr virus (EBV), is expressed in the multinucleated Reed-Sternberg (RS) cells of EBV-associated Hodgkin’s disease (HD), and in the immunoblasts of most acquired immunodeficiency syndrome (AIDS)-related large cell lymphomas and EBV-associated, human immunodeficiency virus (HIV)-negative, premalignant and malignant lymphoproliferative disorders. A naturally occurring LMP1 deletion variant (LMP1-del), characterized by mutational hot spots and a distinct 30-bp deletion within the carboxy terminal region, is identified in the same conditions.

LMP1 is considered to be a viral oncoprotein because of its capacity to transform rodent fibroblasts in vitro and to render them tumorigenic in nude mice. It transforms human keratinocytes, inhibits human epithelial cell differentiation, induces DNA synthesis, and upregulation of bcl-2 expression. In transgenic mice, LMP1 induces hyperplastic dermatitis and abnormal keratin expression.

Recent studies indicate that LMP1 may stimulate intercellular and intracellular signal transduction pathways. In particular, the membrane-spanning segments together with the carboxy terminal 55 amino acids of this oncoprotein are required for maximal stimulation of NF-κB, a transcription factor controlling the expression of genes involved in cell activation and growth control. Stimulation of NF-κB activity appears to occur through phosphorylation and degradation of the inhibitory molecule IκBα, followed by translocation of free NF-κB to the nucleus.

We recently reported in this journal the identification of clustered point mutations and deletions within that region of the oncogene in clinically aggressive cases of HIV-negative HD with high LMP1 expression. High LMP1 expression associated with bcl-2 oncoprotein expression in AIDS-related primary brain lymphomas (HIV-PRL) was just reported in the same forum. These observations prompted us to test whether clustering of nonrandom point mutations within the NF-κB activation domain of the LMP1 gene was a common finding in immunocompromised hosts. Overall, 17 AIDS-related large cell lymphomas (including 6 brain lymphomas and 7 systemic large cell lymphomas [HIV-LCL] from ref 19) and 8 HIV- LMP1-expressing atypical lymphoproliferations have been analyzed. Our findings show that a particular variant sequence of the NF-κB activation domain of the LMP1 gene is predominant in EBV-related lymphoproliferative disorders in immunocompromised hosts.

MATERIALS AND METHODS

Tissue samples, histology, and immunohistology. A survey of the origin of the 25 cases analyzed is presented in Table 1. Diagnosis of lymphoma or lymphoproliferative disorder was performed on 4-μm tissue sections stained with hematoxylin-eosin. LMP1 was de-
Table 1. Clinical and Histologic Data of the 25 LMP-1 Oncoprotein Positive Cases

<table>
<thead>
<tr>
<th>Cases</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>HIV-associated primary large cell brain lymphomas. Immunoblastic morphology, abundant LMP-1" tumor cells.</td>
</tr>
<tr>
<td>10-17</td>
<td>HIV-associated large cell lymphomas without secondary brain involvement. Anaplastic large cell or immunoblastic morphology. Abundant LMP-1" tumor cells.</td>
</tr>
<tr>
<td>18-25</td>
<td>HIV lymphoproliferative disorders</td>
</tr>
<tr>
<td>18</td>
<td>Chronic lymphoproliferative syndrome in a child. Few LMP-1" immunoblasts. JH and TCRβ in germline configuration.</td>
</tr>
<tr>
<td>19</td>
<td>Biclonal B-cell lymphoma after renal transplant in an EBV" host.</td>
</tr>
<tr>
<td>20</td>
<td>Angioimmunoblastic lymphadenopathy (AILD). JH and TCRβ in germline configuration.</td>
</tr>
<tr>
<td>21</td>
<td>T-cell lymphoma of AILD-type. TCRγ rearrangement.</td>
</tr>
<tr>
<td>22</td>
<td>T-cell lymphoma of AILD-type. TCRβ rearrangement.</td>
</tr>
<tr>
<td>23</td>
<td>AILD. LMP-1" B-immunoblasts. JH in germline configuration. Oligoclonal rearrangement of TCRβ.</td>
</tr>
<tr>
<td>24</td>
<td>Chronic lymphoproliferative syndrome in a child from an HIV" mother. Oligoclonal rearrangement of JH and TCRβ.</td>
</tr>
</tbody>
</table>

LMP1 DELETION VARIANTS IN AIDS-RELATED LYMPHOMAS

RESULTS

EBV genomes were detected by ISH, and high LMP1 expression was observed within the immunoblasts of all cases. A comparative view of the sequencing data is given in Fig 1. Seven of 9 HIV-PBLs and half of the HIV-LCLs and HIV-LPDs showed LMP1 deletions. All deletions and most point mutations were located within the first hundred base pairs of the carboxy terminal NF-κB activation domain extending from nucleotide 168 324 to 168 225. Not a single point mutation occurred within the remaining 62 nucleotides from 168 224 to 168 163, identical with the 3' end of the LMP1 coding region. Non-silent point mutations were identified in 100% of cases at position 168 225, in 88% at positions 168 308 and 168 320, and in 84% at positions 168 266 (mutation or part of the deletion) and 168 357 (no more in the NF-κB activation domain). Therefore, by far the most frequent sequence variation was characterized by non-silent point mutations at positions 168 357, 168 320, 168 308, 168 266, and 168 225. The corresponding amino acid changes within the NF-κB activation domain are summarized in Fig 2. A high rate of mutation is seen within amino acid positions 332 to 338 (Fig 3), which are identical to the first six amino acids of the carboxy terminal region of the NF-κB activation domain. Interestingly, the 69-bp deletion originates also in this region. Overall, the same mutation pattern was observed in HIV-PBL, HIV-LCL, and HIV-LPD.

In case 19 the posttransplant B-cell lymphoma occurred in a pretransplant EBV" host, indicating the donor kidney as a source of EBV infection. PCR-driven amplification of DNA extracted from donor PBMC using primers for the critical carboxy terminal region of the LMP1 gene showed two bands migrating at 316 and 286 bp, respectively. Sequencing confirmed the presence of the deletion variant identified in the B-cell lymphoma, but showed also presence of wild-type LMP1, not identifiable in the tumor. In the 52 nonmalignant reactive conditions, carboxy terminal LMP1 deletions were identified in 10 samples (19%). The presence of carboxy terminal LMP1 deletions was significantly associated with malignant lymphoproliferations compared with...
Fig 1. Mutational hot spots within the NF-κB activation domain of the LMP1 Oncogene in HIV-associated lymphomas and atypical lymphoproliferations. Point mutations inducing amino acid changes are in boldface type, silent mutations are underlined. Absence of letter indicates nucleotide identical to the wild-type sequence. Dotted lines indicate deletions of 69 and 30 bp, respectively.

overall reactive conditions ($P < .001$). Interestingly, in reactive conditions most LMP1 deletions (6 of 17) occurred in the florid infectious mononucleosis cases.

DISCUSSION

The results of this study indicate that the carboxy terminal NF-κB activation domain of the LMP1 gene expressed in AIDS-related primary brain lymphomas and disseminated lymphomas is characterized by the presence of a high number of nonrandom point mutations including distinct 30- and 69-bp deletions. This mutational pattern was previously identified in aggressive (relapsing) HD, atypical B- or T-cell lymphoproliferative disorders, posttransplant lymphomas, and HIV-associated oral hairy leukoplakia. Our original observation of strong LMP1 oncprotein expression in such cases is now confirmed in a larger series because 13 of the AIDS-related lymphomas (6 primary brain, 7 systemic) molecularly analyzed in the present report have been shown to express LMP1 oncprotein at high levels when assessed by immunostaining. The identification of numerous tumor cells with a strong staining signal for LMP1 appears to us indicative of oncprotein expression at high levels because abundant LMP1 mRNA transcripts have been identified in similar conditions.

Interestingly, this mutational pattern is found in a setting of profound T-cell anergy, ie, central nervous system lymphoma in AIDS patients, and of diminished T-cell-mediated immunity, ie, angioimmunoblastic lymphadenopathy (AILD) and HD. The chief difference lies in the number of LMP1-expressing cells, which is very high in HIV-PBL and HIV-LCL, but small to intermediate in AILD and HD. However, when transformation of AILD into B-immunoblastic lymphoma occurs, abundant LMP1-expressing tumor cells are observed. This pattern is best explained by the hypothesis that the mutations within the carboxy terminal domain of LMP1 confer a growth advantage to lymphoid cells, still partially counterbalanced in AILD and HD by the host’s immune response. A further decrease in cell-mediated immunity may then lead to an uncontrolled immunoblastic proliferation resulting in B-immunoblastic lymphoma or lymphocyte-depleted HD. Indeed, the outgrowth of the donor-derived LMP1 deletion variant but not of the donor-derived LMP1 wild type in the B-immunoblastic lymphoma of the initially EBV$^+$ host after renal transplantation (case 19) is consistent with a growth advantage of the LMP1 deletion variant over the wild type in the immunosuppressed host.

Several recent findings are in favor of a natural selection process of LMP1 deletion variants. First, all deletions and most amino acid substitutions are located within the carboxy terminal domain of LMP1 required for maximal NF-κB-mediated transcription. Deletions and mutations are restricted to the first 33 amino acids in this region, whereas not a single substitution is observed within the remaining 22 amino acids, a region that is necessary for transformation of Rat-1 fibro-
Wild type B95-8:

<table>
<thead>
<tr>
<th>Position</th>
<th>Gly</th>
<th>Asp</th>
<th>Gln</th>
<th>Gly</th>
<th>Pro</th>
<th>Leu</th>
<th>Gly</th>
<th>His</th>
<th>His</th>
<th>Gly</th>
<th>Asp</th>
<th>Thr</th>
<th>Leu</th>
<th>Ser</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>332</td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>Arg</td>
<td>Thr</td>
<td>Ser</td>
<td></td>
<td>Met</td>
</tr>
<tr>
<td>334</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td></td>
</tr>
<tr>
<td>337</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
</tr>
<tr>
<td>341</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td></td>
</tr>
<tr>
<td>344</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
</tr>
<tr>
<td>346</td>
<td></td>
</tr>
<tr>
<td>347</td>
<td></td>
</tr>
<tr>
<td>348</td>
<td></td>
</tr>
<tr>
<td>349</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td></td>
</tr>
<tr>
<td>353</td>
<td></td>
</tr>
<tr>
<td>354</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
</tr>
<tr>
<td>356</td>
<td></td>
</tr>
<tr>
<td>357</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td></td>
</tr>
<tr>
<td>362</td>
<td></td>
</tr>
<tr>
<td>363</td>
<td></td>
</tr>
<tr>
<td>364</td>
<td></td>
</tr>
<tr>
<td>365</td>
<td></td>
</tr>
<tr>
<td>366</td>
<td></td>
</tr>
<tr>
<td>367</td>
<td></td>
</tr>
<tr>
<td>368</td>
<td></td>
</tr>
<tr>
<td>369</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td></td>
</tr>
<tr>
<td>373</td>
<td></td>
</tr>
<tr>
<td>374</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td></td>
</tr>
<tr>
<td>376</td>
<td></td>
</tr>
<tr>
<td>377</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td></td>
</tr>
<tr>
<td>379</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
</tr>
<tr>
<td>381</td>
<td></td>
</tr>
<tr>
<td>382</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td></td>
</tr>
<tr>
<td>384</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td></td>
</tr>
<tr>
<td>386</td>
<td></td>
</tr>
</tbody>
</table>

Fig 2. Mutational hot spots within the NF-κB activation domain (amino acids 332-386) of the LMP1 oncogene in HIV-associated lymphomas and atypical lymphoproliferations. Absence of amino acid designation indicates amino acid identical to the wild-type sequence. Dotted lines indicate deletions of 23 and 10 amino acids, respectively.

blasts. Such naturally occurring deletion variants (the most frequent variant as present in cases 4 through 7 was tested) maintain their transforming capacity when expressed in Rat-1 fibroblasts. Furthermore, they are preferentially expressed in multinucleated RS cells with the same frequency as the wild-type LMP1 when transfected into the EBV− HD cell line L-428. These data suggest that such LMP1-del variants maintain an oncogenic potential identical to the wild type. Second, such deletion variants may escape immunologically mediated elimination. It has been shown that the LMP1 deletion variant NPC CAO (same point mutations and deletion within the carboxy terminal NF-κB activation domain as observed in cases 4 through 7) is nonimmunogenic in a murine carcinoma model system, in contrast to the wild-type homologue B95-8. Third, the immunomodulatory properties of the LMP1-del variants may differ from the wild type because of a longer protein half-life. Mutations between amino acids 322 and 364, which encompass a critical sequence for the protein, might lead to accumulation of LMP1. Considering the large amount of oncoprotein identified within the tumor cells of this series, it is reasonable to assume that a growth advantage of LMP1-del might result

Fig 3. Mutational hot spots within the NF-κB activating domain of the LMP1 oncoprotein of AIDS-related lymphomas. All tumors have large cell (immunoblastic) morphology and strongly express LMP1. Mutations are clustered between amino acids 333 and 338. The most frequent variant is shown in the center (cases 4 through 7 from Fig 2). Number 16 on the left corresponds to case 2 of Fig 2. Number 6 on the right corresponds to case 10 from Fig 2.
from prolongation of the oncoprotein half-life. This basic mechanism which favors virus growth would also explain that identical carboxy terminal LMPl-del variants are observed in both strain A and B of EBV,23,33 and that LMPl-del variants are found in 30% to 35% of patients presenting with florid infectious mononucleosis24,25 but in only 10% of EBV+ controls without clinical history of this disorder.

ACKNOWLEDGMENT

The authors thank Dr J. Sullivan, University of Massachusetts Medical Center, for PBMC of patients presenting with infectious mononucleosis.

REFERENCES

30. Moorthy RK, Thorley-Lawson DA: All three domains of the

35. Sample J, Kieff EF, Kieff ED: Epstein-Barr virus types 1 and 2 have nearly identical LMP-1 transforming genes. J Gen Virol 75:2741, 1994