High Performance Amphiphilic Polymer/Hydroxyapatite Composite Tissue Scaffolds

Artem B. Kutikov
University of Massachusetts Medical School

Jie Song
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biomaterials Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, Molecular, Cellular, and Tissue Engineering Commons, Orthopedics Commons, and the Translational Medical Research Commons

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](https://creativecommons.org/licenses/by-nc-sa/3.0/).

Creative Commons License

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](https://creativecommons.org/licenses/by-nc-sa/3.0/).

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
High performance amphiphilic polymer/hydroxyapatite composite tissue scaffolds.
Artem Kutikov, Jie Song
Department of Orthopedics and Physical Rehabilitation, Department of Cell and Developmental Biology
University of Massachusetts Medical School
55 Lake Ave North, Worcester MA, 01655

Contact: Jie.Song@umassmed.edu
Phone: 508-334-7168

There is a critical clinical need for alternatives to autograft and allograft bone for over 500,000 bone grafting operations performed each year in the United States. Current synthetic bone grafts suffer from poor handling characteristics, brittle mechanical properties, and inconsistent bioactivity. By blending a biodegradable amphiphilic polymer with hydroxyapatite (HA), the main mineral component in bone, we developed an improved synthetic bone graft. The polymer/HA composites were fabricated in both 2-D and 3-D forms by electrospinning and 3-D printing. These materials exhibited unique handling characteristics such as high tensile elasticity (>200% failure strain) and self-stiffening properties upon hydration, allowing their facile/stable fixation around an open defect or within a confined defect. They are also superhydrophilic, enabling the absorption of aqueous cell suspensions and protein therapeutics. We showed that bone marrow-derived mesenchymal stem cells (MSCs) readily attached to these scaffolds and expressed increased levels of osteogenic genes with and without osteogenic induction in culture. These scaffolds also supported the retention and sustained release of rhBMP-2. These high-performance composite materials are being explored for guided bone regeneration and skeletal tissue repair in various formats.