
A Disserttion Presented

Eric Lee Merithew

Submitted to the Faculty of the

University of Massachusetts Graduate School of Biomedical Sciences, Worcester

in partal fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

April 20 , 2004

Biomedical Sciences



COPYRIGHT

Portions of this thesis appeared in:

Merithew , E. , Hatherly, S., Dumas, 1. , Lawe , D. , Heller-Harrison , R. and
Lambright, D.G. (2001) Structural Plasticity of an Invariant Hydrophobic
Triad in the Switch Regions of Rab GTPases is a Determinant of Effector
Recognition. J. Biol. Chem. 276, 13982- 13988.

Dumas, 1.1., Merithew , E., Sudharshan, E. , Rajamani , D. , Hayes, S. , Lawe, D.C.,
Corvera, S. and Lambright, D.G. (2001) Multivalent Endosome Targeting by
Homodimeric EEA1. Mol. Cell 8, 947-958.

Lawe, D.C., Chawla, A., Merithew, E., Dumas , 1.1., Carrngton, W., Fogarty, K.,
Lifshitz, L., Tuft, R. , Lambright, D.G., and Corvera, S. (2002) Sequential Roles
for Phosphatidylinositol 3-Phosphate and Rab5 in Tethering and Fusion of Early
Endosomes via their Interaction with EEA1. J. Biol. Chem. 277, 8611-8617.

Merithew , E. , Stone, c., Eathiraj, S. , and Lambright, D.G. (2003) Determinants
of Rab5 Interaction with the N Terminus of Early Endosome Antigen 1. J. Biol.
Chem. 278, 8494-8500.

Zhu, Z., Delprato, A., Merithew , E. and Lambright, D.G. (2001) Determinants of
the Broad Recognition of Exocytic Rab GTPases by Mss4. Biochemistry 40,
15699- 15706.

Delprato, A., Merithew , E. and Lambright, D.G. (2004) Structure, Exchange
Determinants, and Family-wide Rab Specificity of the Tandem Helical Bundle
and Vps9 Domains of Rabex-5. (submitted).



STRUCTURAL BASIS FOR RAB5 ACTIVATION AND EFFECTOR

SPECIFICITY IN ENDOSOME TETHERING

A Dissertation Presented

By 

Eric Lee Merithew

Approved as to style and content by:

Silvia Corvera, MD, Chair of Committee

Roger Davis, Ph.D., Member of Committee

Kai Lin, Ph.D., Member of Committee

Mary Munson, Ph.D., Member of Committee

A. Andrew Bohm, Ph.D., Member of Committee

David G. Lambright, Ph.D., Dissertation Mentor

Anthony Carruthers, Ph.D.,
Dean of the Graduate School of Biomedical Sciences

Interdisciplinary Graduate Program

April 20th, 2004

iii



ACKNOWLEDGEMENTS

Many people have been a part of my graduate work, as friends , teachers, and

colleagues. My mentor David Lambright, first and foremost, has been all of these. The

best advisor and teacher I could have wished for, the unmatched dedication to his

research, his students and discovery of the elusive "finger of God" is inspiring. Thank

you for knowing when to push and when to be patient. Time after time, your effortless

grasp of science at its most fundamental level helped me in the struggle for understanding

and appreciation.

In my lab, I was fortunate to be surrounded by knowledgeable and friendly people

who helped me daily. Special thanks go to Anna Delprato, John Dumas and Craig Stone,

without whom this work would never have been completed. My other labmates,

including Tom Cronin, Jonathan DiNitto, Sudharshan Eathiraj, Scott Hatherly, Susan

Lietzke, Ashwini Mishra, XiaoJing Pan, Chris Ritacco and Zhongyuan Zhu were each a

great help in their own way. Many thanks also to Deirdre Lawe and Kim Crowley for

their vital collaborative support.

I would like to thank my committee, Silvia Corvera, Roger Davis, Kai Lin and

Mary Munson for their insight and critical evaluation of my research. I would also like to

thank Andrew Bohm for the time and effort given to the completion of this thesis.

Finally, I would like to thank those closest to me, whose presence helped make

the completion of my graduate work possible. Life would not have been the same

without my classmates and good friends Corey Smith, Susan Hayes and Leanne Wilson-



Fritch. I wil never think about frogs, heated seats and mayonnaise the same way again.

I would like to thank my family, and especially my parents, for their absolute confidence

in me. The knowledge that they wil always be there to push me up that slippery slope

makes it just that much less steep. Most of all, my wife Jennifer O'
Neil , thank you for

your love, patience and understanding, and the assurance that life is just beginning when I

step out of the laboratory.



ABSTRACT

As critical regulators of vesicular trafficking, Rab proteins comprise the largest

GTPase family, with thirty-eight functionally distinct members and another twenty

isoforms in the human genome. Activated Rab GTPases interact with effector proteins

involved in vesicle formation, transport, tethering, docking and fusion. The specificity of

Rab interactions with effectors and regulatory factors plays a central role with respect to

the fidelity of membrane trafficking. Rab recognition determinants and the mechanisms

underlying interactions with structurally diverse regulatory factors and effectors are

complex and poorly understood. Using Rab5 mediated endocytic transport as a model

system, the work described in this thesis provides insight into the structural basis

underlying the interaction of effectors and regulatory factors with Rab GTPases. In

addition , structural and biochemical approaches have been used to define how specific

Rab5 interacting proteins function in the endocytic and recycling pathways. These

results establish novel structural and functional concepts that can be tested using family

wide analyses of Rab GTPase recognition determinants and regulatory roles in the cell.
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CHAPTER I

INTRODUCTION

The compartmentalization of the eukaryotic cell requires a complex transport

system to distribute lipids and membrane proteins to subcellular locations. The flow of

material between donor and acceptor membranes is mediated by vesicles containing

various cargo. Transport pathways can be classified into two basic types of membrane

trafficking. Exocytosis faciltates the transport of de novo proteins from the endoplasmic

reticulum (ER) through the Golgi to the plasma membrane. Endocytosis represents the

internalization of membrane from the cell surface through endosomes to the lysosome,

and is often associated with receptor recycling and degradation (1). In addition, a host of

specialized transport steps , including anterograde and retrograde transport as well as

sorting between organelles, target cargo molecules to sites of action or recycle transport

factors to donor compartments. These processes allow organelles to maintain a protein

content and physical structure necessary for normal biological function (2,3). The

cellular machinery required to maintain membrane integrity may also playa fundamental

role in the formation of subcellular compartments by assembling the protein and lipid

components that define them (4).

In each membrane transport event, protein-protein and protein-lipid interactions

promote the budding of a segment of membrane from the donor compartment to form a

transport vesicle containing cellular cargo. The vesicles are shuttled, often along



cytoskeletal elements, to specific cellular locations where tethering factors promote

association of vesicles with acceptor membranes. Docking allows increased association

of vesicles with acceptor membranes and further recruitment of cellular factors that

promote fusion (2 6). The transition from the docking to the fusion step involves

mixing of the lipid bilayers to form a single fused membrane (7 8).

Enrichment of sorted cargo proteins in part of a pre-existing membrane promotes

the recruitment of adaptor proteins as well as GTPases of the Arf, Sar, and Arl families to

define sites of vesicle formation. Coat scaffolds are then recruited to the adaptors, where

assembly causes membrane curvature and vesicle bud formation. The coatomer coat

complexes (COPI and COPII) facilitate ER to Golgi transport, whereas clathrin coat

formation promotes vesicle budding at the plasma membrane, endosomes and the trans-

Golgi network (TGN). The GTPase dynamin is necessary for scission of vesicles from

donor membranes. Immediately after vesicle budding, scaffold and adaptor protein

dissociation results in coat disassembly. Following vesicle formation, long range cellular

transport occurs along either the actin or microtubule cytoskeleton. The GTPases of the

Rac/Rho family aid in cytoskeletal rearrangements to promote cellular transport. Vesicle

lipids or cargo proteins interact with motor proteins, either directly or through adaptor

proteins, to propel transport along the cytoskeleton. Along microtubules, kinesins and

dyneins promote minus and plus end directed transport, respectively, while myosins

coordinate movement along actin.

Vesicle tethering at the target membrane by extended coiled-coil proteins or

multi subunit complexes promotes recruitment of docking factors necessary for fusion.



Integral membrane proteins known as soluble N-ethylmaleimide-sensitive factor (NSF)

attchment protein (SNAP) receptors (SNAREs) are activated or "primed" by alleviation

of inhibitory N-terminal domains by Sec1-like proteins. Vesicle SNARE (v-SNARE),

target SNARE (t-SNARE), and SNAP-25 complex formation brings membranes within

close proximity (9, 10). ATP dependent dissociation of SNARE complexes by NSF

proteins completes the membrane fusion event (7 8).

Rab GTPases

Vesicle transport has evolved the directionality and specificity necessary to

distribute membrane proteins and lipids between organelles or subdomains (5). The

small monomeric GTPases of the Rab family have been implicated in regulation of each

transport step and playa substantial role in establishing and maintaining subcellular

domains (2, 11). This family of proteins also provides a basis for coupling cellular

signals to the membrane transport machinery. As the largest GTPase family, Rab

proteins regulate cellular transport, organelle biogenesis as well as protein sorting, and

have a localization consistent with their role as regulators of specific intercellular

transport steps (2 11- 14).

Like other GTPases, Rab proteins have been evolutionarily designed as poor

enzymes , with relatively slow intrinsic rates of nucleotide exchange and GTP hydrolysis

that can be accelerated by accessory factors (15- 18). This cycle of GTP turnover

promotes Rab regulation by "switching" between two conformational states, an inactive

(GDP bound) form and an active (GTP bound) form (19,20). In the active form



localization to the cytoplasmic face of membranes and subsequent recruitment of effector

proteins is central to the role of Rab GTPases in the regulation of membrane transport

(Figure 1). Modulation of the GTPase cycle by Rab accessory proteins allows control of

trafficking by external signaling pathways (11 17).

Rab homologues in the yeast S. cerevisiae Sec4 and Y ptl , were first identified as

Ras-like proteins involved in transport and secretion. Deletion of these proteins is lethal

whereas temperature-sensitive mutations fail to complete vesicle secretion and

accumulate secretory vesicles following transfer to the restrictive temperature (21,22).

Complete analysis of the yeast genome identifies 11 Rab-like GTPases defined by

conservation of Rab/Ypt family motifs (12). Disruption of these proteins results in

perturbed protein sorting, vesicle transport and organelle morphology (12 23,24). Yptl

Ypt31/32, and Sec4 function in the exocytic pathway whereas Ypt51 (Vps21), Ypt52

and Y pt53 function in the endocytic pathway. Y pt7 functions in vesicular transport to the

vacuole and Y pt6 functions in intra-Golgi and late endosome (LE) to Golgi transport (2).

The role of YptlO, which targets to the Golgi and is non-essential , is poorly understood

(25). Y ptll appears to associate with the class V myosin Myo2p and may be involved in

transport of mitochondria to newly forming buds (26). In budding yeast, Ypt proteins

involved in exocytosis are essential for viabilty whereas those that function in

endocytosis are not (2). Table 1 summarizes the localization, function and known

accessory factors of the Ypt proteins in S. cerevisiae.
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Figure 1. Intracellular localization of Rab proteins. Diagram of the localization
of some of the Rab proteins in mammalian cells. Rab GTPases function at varous
steps in either the exocytic (blue) or endocytic (green) pathways. CCV, clathrin
coated vesicle; CCP, clathrin coated pit; EC, epithelial cells; IC, ER/Golgi intenne-
diate comparment; M, melanosomes; MTOC, microtubule organizing center; SG,
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work. Taken from Zerial & McBride, 2001 (11).



Table 1: Y pt Protein Localization and Function

Prtein Localization OEF OAP (27) Function

Yptl TRAPP (28 29) ER to Oolgi transport, TRAP complex (30-32)

Sec4 Sec2 (33), Dss4 (34) Oypl-4p Oolgi to PM trsport, Exocyst (22,35)

Ypt6 LE, Ric1/Rgp 1 (36) Oyp2, LE to Oolgi and intr-Oolgi trsport (37,38)

Ypt7 LE, Vps39 (39) Oyp4, LE to vacuole trsport (40,41)

YptlO CO (25)

Y ptl Movement of mitochondria to bud (26)

Ypt3I TON TRAPP (28) Budding from the TON (42,43)

Ypt32 TON TRAPP (28) Budding from the TON (42,43)

YptSl PM, Vps9 (44,45) Oypl, PM to endosome trsport (46)

Y ptS2 PM, Vps9 (44,45) Oypl,3p PM to endosome trsport (46)
YptS3 PM, Vps9 (44,45) Oypl PM to endosome trsport (46)

, \

Rab family members were first isolated in mammals from t Qrain cDNA

libraries on the basis of similarity to Sec4 and Y ptl (47). Over 60 Rab family members

have been identified with 38 functionally distinct Rab GTPases and the remainder

representing isoforms resulting from gene duplication or mRNA splicing (14,48,49). The

dramatic expansion of the Rab family compared to yeast likely reflects the increased

regulation and tissue specific expression often associated with the more complex

mammalian systems.

Some Rab family members are involved in many trafficking events. For example

Rab5 serves as a master regulator of endosome trafficking and is essential for plasma

membrane to endosome transport, early endosome (EE) homo- and heterotypic fusion

and functions in EE to LE transport (50-53). Other Rab proteins playa more specific

role, as is evident from either cellular function or tissue distribution. Whereas Rab13 has

a specialized function in tight junction formation, Rab 17 is only expressed in polarized



epithelial cells (54-56). Additionally, many mammalian Rab GTPases with overlapping

cellular distributions coordinate discrete steps along the same pathways (57 58). Table 2

summarizes Rab protein localization and function in mammalian systems.



Table 2: Rab Protein Localization and Function (2 11,48,75)

Protein Localization Function Isofonn

Rabl ER, ER to Golgi and intr-Golgi trsport

Rab2 ER, Golgi to ER retrograde trsport

Rab3 SV, SG, PM synaptic vesicle and chromaffin grule secretion

Rab4 EE, RE, PM sortng/recycling in early endosomes

Rab5 EE, CCV , PM CCV to EE transport, EE motility

Rab6 ER, CG, TGN retrograde Golgi to ER and intr-Golgi trsport

Rab7 LE, EE to LE and LE to lysosome trsport

Rab8 TGN, SV, SG, PM TGN to PM trsport and regulated secretion

Rab9 TGN, LE LE to Golgi trsport

Rab 10 TGN

Rab 11 RE, TGN, PM endosomal recycling, PM to Golgi trsport

Rab12 CG,

Rabl3 EfJ tight junction fonnation

Rab14 CG, TGN, EE EE to Golgi recycling

Rab15 EE, RE, PM EE to PM recycling

Rab17 EE, trscytosis

Rabl8 EE, RE, PM EE to PM recycling

Rabl9

Rab20

Rab21 TGN, PM TGN to PM polarized secretion

Rab22. EE, interaction betWeen EE and biosynthetic pathways

Rab23 EE, PM to EE trsport, neura patternng

Rab24 ER, CG, LE

Rab25 EE, RE, PM apical recycling and trscytosis

Rab26 regulated secretion

Rab27 grule secretion, melanosome trsport

Rab28

Rab29

Rab30

Rab32 melanosome trnsport

Rab33 intr-Golgi trsport

Rab34 LE, regulation of lysosome morphology

Rab35

Rab36

Rab37 regulated secretion

Rab38 melanosome trsport

Rab39 promotes endocytosis

Rab41



.-.

'n.

ER= endoplasmic reticulum, PM= plasma membrane, TGN= trans Golgi network, SV=
secretory vesicle, SG= secretory granule, LE= late endosome, EE: early endosome, MS=

melanosome, CCV= clathrin coated vesicle, ETJ= epithelial tight junctions, CG= cis-
Golgi, RE= recycling endosome, PG= phagosome, LS=lysosome

The Ypt proteins localize and appear to regulate transport in the same cellular

compartments as their closest mammalian homologues. Within the exocytic subfamily,

Yptl, Sec4 and Ypt31/32 are functionally related to Rabl, Rab8 and Rabll respectively,

which is consistent with comparisons of sequence similarity. In the endocytic group,

Ypt51152/53, Ypt6 and Ypt7 are equivalent to Rab5, Rab6 and Rab7 respectively

although the vacuolar sorting pathway in yeast lacks much of the complexity of the

endosome system in mammals (46 59,60). In many cases, Rab specific accessory and

effector proteins are also evolutionarily conserved, such as the yeast YptSl interacting

protein Vaclp and the mammalian Rab5 effector Rabenosyn-5 (61). Additional evidence

for a functionally conserved core of membrane traficking proteins is provided by protein

substitution experiments using orthologs. The mouse RablA can functionally substitute

for Yptl in S. cerevisiae and Rab5 can replace YptS in S. pombe (62 63). At present, the

only Rab deletions in mammalian systems are Rab3 deficient mice. Rab3A deficient

mice have mild phenotypic effects; however, deletion of all Rab3 isoforms (Rab3A,

Rab3B , Rab3C and Rab3D) is postnatal lethal (64,65).

The common localization for evolutionarily conserved Rab homologues is a key

point in understanding their function. In many cases, Rab localization is one of the

defining features of an organelle or vesicular compartment and there appear to be discrete

membrane domains within these compartments where each Rab functions (4 57).



Mislocalization of individual Rab family members often leads to aberrant trafficking

events or morphological changes in the compartment with which it is associated. The C-

terminal hypervariable region of Rab family members, which is doubly prenylated 

vivo, contributes to targeting of Rab GTPases to membranes (66,67). Rab5 and Rab2

chimeric proteins with C-terminal sequences substituted for the equivalent region of the

late endosomal Rab7 localize to late endosomes (68). However, relocalization of

chimeric Rab proteins based on the variable C-terminal region does not confer function

and is not always accurate, consistent with a requirement for additional determinants for

targeting and function (67 69,70). The targeting of.Rab GTPases by selective membrane

factors, coupled with the subsequent recruitment of effector proteins, is hypothesized to

promote a steady-state membrane environment that defines a comparment or organelle.

For example, the Rab9 effector TIP47 has an increased affinity for the Mannose-

Phosphate Receptor (MPR) when complexed with Rab9, creating an enriched

environment for MPR recycling (71 72).

The requirement for Rab proteins in the regulation of membrane trafficking

suggests a potential role in disease (73-75). Mutations in Rab GTPases and other genes

encoding proteins essential for specific transport steps have been identified. Griscell

syndrome, a disease that causes depigmentation and immune deficiency, is due to

mutations in Rab27A (76-78). Loss of the Rab accessory factor, Rab escort protein

(REP), causes choroideremia, a genetic disease resulting in retinal degeneration (79).

Mutation in another Rab accessory factor, Rab GDP dissociation inhibitor a (RabGDla)

is associated with X-linked mental retardation (80,81). Diseases or infections that utilze
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or alter trafficking pathways may also function through manipulation of Rab GTPase

pathways. A number of diseases are caused by aberrant transport of proteins, such as

GLUT4 transporters in non-insulin dependent diabetes melltus, the cystic fibrosis

transmembrane conductance regulator (CFTR) in cystic fibrosis, or (3-amyloid in

Alzheimer s disease (2 82-84). In addition, phagosomes containing the pathogens 

tuberculosis or L. donovani block recruitment of Rab7, delaying phagosome maturation

and lysosomal degradation, thereby allowing for propagation of infection (85,86).

Rab Family Strcture and Phylogenetics

The crystal structure of Rab3A revealed an overall fold similar to other Ras-like

GTPases, with a six-stranded beta sheet surrounded by five alpha helices (Figure 2)

(18,87). GTPases typically conserve five guanine-nucleotide binding motifs that underlie

a common mode of nucleotide binding with some differences in nucleotide contacts that

appear to account for observed variations in affinity and intrinsic rates of GTP hydrolysis

(Figure 3) (18,88,89). Conversion from the GDP to GTP bound state is accompanied by

the ordering of the flexible "switch regions " (switch I: al/(32 loop; switch II: (33/a2 loop,

a2 helix and a2/(34 loop) into an activate conformation (20). The comparison of GTP

and GDP bound structures of Sec4p demonstrates that the conformational change is

localized to these regions (88).

Crystallographic studies of Rab GTPases have also identified structural motifs

and modes Of effector interaction that are distinct from other GTPase familes. A glycine

insertion in the switch I region of Rab proteins faciltates a more extensive and highly
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Switch I
Figure 2. Overall structure of Rab3A. Ribbon representation of the Rab3A
structure (from Dumas et aI., 1999) (18) with the putative switch regions highlight-
ed in green, the regions corresponding to the complementar detennning regions
(CDRs) (see text and Figure 5) in light blue and the nucleotide in yellow.
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Figure 3. Nucleotide binding of Rab3A. Schematic of contacts between Rab3A
and the GTP analog GppNHp from the Rab3A strcture (Dumas et al. , 1999) (18).
Colors denote contributions from the five guanine nucleotide binding motifs (Gl-
G5).
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ordered hydrophobic interface between the switch regions compared with other GTPases

(Figure 4) (18). Rab GTPases have flexible N- and C-terminal hypervariable regions that

were either excluded or disordered in the known Rab GTPase structures. The structure 

the complex between a constitutively active mutant of Rab3A and the effector

Rabphilin- , revealed an interaction epitope that extends from the switch interface to an

adjacent pocket formed by three hypervariable complementary determining regions

(CDRs) corresponding to the N- and C-termini of the GTPase domain and the a3/(35 loop

(Figure 5) (90).

A number of phylogenetic studies have evaluated Rab protein familes from

multiple organisms (14 60). Members of the Rab GTPase family are defined by five Rab

family specific sequences (RabF motifs) located either in the putative switch I and II

regions or in the adjacent (33 and (34 strands. Four additional subfamily-specific regions

(RabSF motifs) define etght subfamiles within the Rab family. The RabSF motifs

include all three Rab CDRs as well as a region corresponding to the al helix and most of

the al/(32 loop (Figure 6) (48,60). Overall , the N- and C-terminal extensions of Rab

proteins are the most variable regions whereas those involved in nucleotide binding are

highly conserved (68, 91).

A key question concerns the molecular and structural mechanisms by which Rab

GTPases generate highly selective recognition of diverse effectors while retaining broad

specificity for particular accessory factors. Phylogenetic, structural, biochemical and

genetic studies of chimeric and mutant Rab proteins have implicated the hypervariable

CDR regions as partial but not exclusive determinants of functional specificity (69,92).



Figure 4. The switch interface of Rab3A in the active conformation. Like other
GTPases, the conformation of the switch regions is coupled to the presence of GTP.
In Rab GTPases, the active conformation is further stabilzed by extensive hydro-
phobic interactions involving highly conserved residues in the switch regions. This
interface is faciltated by a conserved glycine insertion (G56) in the switch I region.
Rab3A strcture from Dumas et aI. , 1999 (18).
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Rabphilin 3A 

Rab3A

Switch

Switch

Figure 5. The Rab3AlRaphilin-3A structure. (A) The interaction epitope extends
from the relatively conserved switch interface to an adjacent pocket formed by three
hypervarable CDRs corresponding to the N- and C- termni of the GTPase domain
and the a3/(35Ioop. The orientation of Rab3A is rotated 90 relative to that in Fig-
ure 2, Raphiln-3A is shown in orange with coordinated Zn 2+ ions shown as gray
spheres (B) Hypothetic Rab switch model in which binding specificity is deter-
mined by the CDRs. GTP hydrolysis leads to a conformational transition in the
switch I and II regions, resulting in dissociation of the Rab3A/Rabphiln-3A com-
plex. Figure adapted from Ostermeier & Brunger, 1999 (90).
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Figure 6. Neighbor-joining dendogram of Rab family members. The roman
numerals (I - VII) and colored branches represent Rab subfamlies. Rab proteins
with similar functions group together irrespective of organism suggesting that many
are related or direct orthologs. While it does serve as a guideline, phylogenetic rela-
tionships do not account for all of the observed functional relationships between
Rab GTPases. Adapted from Pereira-Leal & Seabra, 2001 (60).
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Furthermore, interactions involving hypervariable regions can not explain the ability of

RabGDI to recognize all Rab GTPases, yet stil discriminate against other GTPase

familes (93-96). Likewise , a number of regulatory factors and effectors are known to

interact with two or more Rab GTPases. These observations imply the existence of

specificity determinants that are common to Rab GTPases or Rab subfamilies, but not

other GTPase familes.

The Rab GTPase Cycle

As previously described, Rab GTPases cycle between GDP and GTP bound

forms. This conversion allows Rab proteins to function as regulatory factors capable of

integrating signaling with membrane trafficking. The Rab GTPase cycle involves a

series of steps, mediated by accessory factors, as ilustrated in Figure 7. Rab GDP

dissociation inhibitor (RabGDI) sequesters inactive Rab proteins in the cytoplasm and

promotes recycling to donor membranes. Interaction with GDI dissociation factors

(GDFs) accelerates association of prenylated Rab proteins with membranes, where they

are activated by guanine nucleotide exchange factors (GEFs). Effector recruitment

persists until GTP hydrolysis occurs or GTPase activating proteins (GAPs) accelerate the

slow intrinsic hydrolysis rate, returning the Rab protein to the inactive state.

Cytoplasmic Sequestration and Membrane Association. 
Following synthesis, Rab

proteins associate with Rab Escort Protein (REP) in the cytoplasm. This complex is

recognized by Rab geranylgeranyl transferase, which transfers two 20 carbon geranyl

moieties to the conserved cysteine motif present in the C-terminal tails of most Rab



Donor Membrane

GDP GTP Vesicle

GEF

li)ti: ?i-ttl::'

.vesicle

Figure 7. Reguators of the YptlRab GTPase nucleotide cycle. YptlRab GTPases
cycle between GTP and GDP bound forms. Accessory factors which regulate
nucleotide exchange or GTP hydrolysis control the activation of YptlRab proteins.
The activated YptlRab GTPases recruit effector proteins which coordinate distinct
membrane transport steps.

Acceptor Membrane



GTPases. REP also maintains the solubilty of Rab proteins until targeted to the

appropriate membrane for activation (97-99). Within subsequent rounds of the GTPase

cycle, Rab proteins may dissociate from target membranes and return to donor

membranes through association with RabGDI. RabGDI binds the GDP form of Rab

proteins and also associates with the prenyl groups to maintain Rab solubilty in the

cytoplasm (93, 100- 103). Sec19, the RabGDI in budding yeast, is essential for viabilty

and prenylation. Association with REP/GDI is essential for the targeting of Rab proteins

to specific membranes (104, 105).

Rab proteins must interact with membranes through their prenyl groups to

function properly. In order to dissociate from RabGDI, the complex is thought to interact

with GDI dissociation factors (GDFs) (2 104). Originally described as activities that

accelerate dissociation of Rab GTPases from RabGDI , putative GDFs have recently been

identified (104). The Yip proteins , and their mammalian homologues PRA- l and PRA-

are a family of conserved integral membrane proteins which have been shown to

accelerate dissociation of Rab/RabGDI complexes (95, 106- 109). Based on their

localization, GDFs may also contribute to membrane targeting. The Yiplp (PRA-

protein targets the ER and Golgi whereas Yip3p (PRA- l) localizes to the Golgi and late

endosomes. Each Yip/PRA protein may promote release of a different subset of Rab

proteins from RabGDI (95, 106, 110, 111). Currently, there is not enough data to

distinguish whether each Rab has its own GDF localized to specific target membranes or

whether a few GDFs recognize a broad set of Rab GTPases, with additional factors that

promote sortng to discrete membrane subcompartments (111).



-a- .

Guanine nucleotide Exchange Factors (GEFs). 
In conjunction with proper

membrane localization, Rab proteins must be converted to the GTP-
bound form to recruit

effector proteins necessary for membrane trafficking. Rab GEFs accelerate the

intrinsically slow release of GDP by preferentially binding the nucleotide free form

(112, 113). Subsequent GTP binding results in activation and GEF dissociation. GEFs

with limited sequence similarity have been identified for each of the yeast Ypt proteins

(Table 1). A number of mammalian GEFs have also been identified including

homologues of the yeast GEFs, such as Rab3GEF and the Vps9 domain (2).

Structural information about GEFs is presently limited to other GTPase 
familes,

with the exception of Mss4, which exhibits weak exchange activity for several exocytic

Rab proteins (114-119). The overall sequence and fold of GEF domains show no

obvious similarity and it is unlikely that Rab recognition occurs by a common

mechanism. Although acidic residues are typically important for the 
GTPase/GEF

interaction, the function is not the same in all cases. Within the Rab family, GEFs have

been identified as components of larger complexes, which also contain effector proteins

for the same Rab GTPase (2). For example, Vps39, a Ypt7 GEF, is a component of the

HOPS complex whereas the Rab5 GEF Rabex-5 forms an obligate heterodimer 
in vivo

with the Rab5 effector Rabaptin-5 (39,120). These complexes may be important for

amplifying and stabilzing the population of activated Rab proteins in localized regions of

donor, acceptor, and/or vesicle membranes.

GTPase Activating Proteins (GAPs). Once vesicle fusion has occurred, it is

important to inactivate Rab proteins so that constitutive recruitment of effector proteins
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does not take place. The intrinsic rate of GTP hydrolysis varies among Rab family

members, but overall the reaction is relatively slow. A tighter control of Rab inactivation

is sometimes necessary to control specific traficking events (121 122). GAP association

stabilizes the transition state for GTP hydrolysis and dramatically accelerates this

process. The Gyp family of GAPs has been identified for Ypt proteins in yeast (Table 1)

and, unlike GEFs, do not show a high degree of specificity for particular Ypt proteins

(123-126). Deletion of Gyp family members in yeast has no effect on viabilty

(124 127 128). Likewise, a constitutively active mutant of Rab5 promotes fusion,

suggesting that GAPs are negative regulators of vesicle fusion (16, 129). Thus, Rab

GAPs may playa less critical role in the regulation of membrane transport than GEFs, by

restricting specific processes or preventing inappropriate fusion events that would be

detrimental to the cell (2).

Gyp proteins share a common fold and interact with various members of the Y pt

family. Information about the catalysis of Rab GTP hydrolysis comes from the structure

of the yeast Ypt GAP, Gypl, and the structures of GAP complexes from other GTPase

familes (27, 130- 133). In contrast to Rab GEFs, Rab GAPs such as the Gyp proteins and

GapCenA share a high degree of homology (27 130). The active site of Gyp proteins is

similar to Ras-GAP and Cdc42-GAP, including a conserved arginine "finger" that defines

a universal mechanism to promote hydrolysis (27, 133, 134).



Rab Regulation of Membrane Trafficking

A primary function of the GTPase cycle is to control the population of activated

Rab proteins. The subsequent recruitment of effectors is central to the abilty of Rab

GTPases to regulate membrane transport. The requirement for Rab proteins in various

steps of membrane transport have been examined using a wide range of techniques

including protein depletion, cell-free transport assays and dominant-negative or

constitutively active mutations (2). The discovery that a single Rab can control more

than one transport step suggests that Rab GTPases are capable of recruiting multiple

effectors.

Vesicle Formation. Rab proteins and their effectors have been shown to be

necessary for generating transport vesicles. The yeast Y pt31 and 32 proteins are required

for release of vesicles from the yeast TGN, Rabl is essential for ER vesicle formation

whereas Rab5 is required for the formation of clathrin-coated pits (43, 135, 136).

Rab/effector complexes utilze a number of mechanisms to promote vesicle budding.

The interaction of Rab9 with TIP47 enhances the affinity for MPR cytoplasmic tails

resulting in MPR clustering and vesicle formation (58,72). The Rab 11 effector

Rabphiln- ll interacts with Sec13, a component of the COPII coat complex to promote

vesicle formation by coat recruitment (137).

Vesicle Motilty. The actin and microtubule cytoskeletons serve as "roadways

for the movement of vesicles throughout the cell. Overexpression of Rab8 results in

cytoskeletal rearrangements whereas Rab5 stimulates endosome/microtubule association

and movement of endosomes along microtubules (52,138). Microtubules faciltate
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vesicle movement over large distances within the cell and Rab GTPases have been shown

to interact directly or through adaptor proteins with kinesins and dynein (139). For

example, the Rab6 effector Rabkinesin-6 is a kinesin motor protein , Rab4A binds the

human dynein LIC- l and the Rab7 effector RlLP has been shown to enhance recruitment

of the dynein-dynactin complex to late endosomal structures (140- 143).

Rab dependent actin cytoskeleton transport has also been demonstrated by

identification of myosin motors as Rab effectors (139). The well characterized Rab27 

effector, Myosin Va, regulates actin based melanosome transport to the dendritic

extensions of melanocytes (78, 144- 146). Mutation of either Rab27A or Myosin Va

results in a failure to deposit melanosomes at the dendrite and depigmentation

(78, 139,144). Another unconventional myosin, Myosin Vb, interacts with the Rab11

effector Rab11-FIP2 and colocalizes with RabllA to the recycling endosome (147- 149).

Rab/motorprotein interactions have also been observed in yeast where the type V myosin

homologue My02p is required for Sec4p dependent transport of secretory vesicles to the

bud tip (150, 151).

Vesicle Tethering. Following translocation, physical links must occur over

considerable distances to faciltate SNARE complex formation and membrane fusion.

Because Rab GTPases and SNARE proteins are distributed throughout membranes, this

process of membrane "tethering" may also confer specificity on a fusion reaction (152).

The yeast SNAREs Ssolp and Ss02p are distributed over the entire plasma membrane,

yet vesicles only fuse with specific regions within the membrane where the exocyst

complex is located (153). Two types of proteins required for membrane trafficking have
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been identified as potential tethering factors, a group of extended coiled-coil proteins and

a number of large multi subunit complexes (152). Early endosome autoantigen 1 (EEA1),

Rabenosyn-5 and the Rabaptin family members are long coiled-coil containing proteins

that may function as Rab5 dependent endosomal tethers (61, 154, 155). Yptl is implicated

in GM130 and Giantin dependent ER vesicle docking with the Golgi via the coiled-coil

protein Usolp, whose mammalian homologue p115 interacts with Rabl (136 156, 157).

Membrane trafficking complexes that have been implicated in tethering include the

homotypic fusion and vacuole protein sorting (HOPS or Class C) complex, the conserved

oligomeric Golgi (COG) complex, the Dsllp complex, the Golgi-associated retrograde

protein (GARP) complex, the transport protein particle (TRAPP I & II) complexes and

the exocyst (152). Tethering factors have also been identified for other GTPase familes,

including the Arf and Arl GTPases that interact with Golgin proteins (158, 159).

SNARE complex formation in vitro is too slow to account for proper membrane

fusion in vivo, emphasizing the need for additional factors to accelerate this process

(160). The role of each of these complexes or proteins differs, but all appear to function

upstream of the stable docking of vesicles to their target membranes. Tethering factors

may act kinetically, by maintaining the vesicle within a certain vicinity of the target

membrane and increasing the probabilty of SNARE-mediated fusion (152). The yeast

Usolp contains no enzymatic functions, but directly interacts with integral and membrane

bound proteins to shift the steady state of diffusion , favoring membrane clustering

(136, 157); Tethers may also act by promoting fusion through direct activation of Rab

GTPases on the vesicle or target membrane (152). A number of tethering complexes



contain factors capable of promoting Rab activation, including the Yptl and Ypt31/32

GEF activity of the TRAPP complexes and the Rab5 GEF activity of Rabex-5, which

binds Rabaptin-5 (28 53, 161). Although the distribution of tethering factors and Rab

proteins is an area of active investigation, Rab5 and its putative tethering factor Rabaptin-

5 are required on both vesicle and target membranes for homotypic fusion. EEAl is only

necessary on early endosomes in order to promote heterotypic fusion with clathrin coated

vesicles (162 163). Finally, long range tethers may undergo conformational changes or

give way to shorter range effector interactions to bring membranes into closer proximity.

Vesicle Docking and Fusion. Although Ypt/Rab proteins act during budding,

transport and tethering, Rab associated factors and complexes may also play

thermodynamic role in docking and fusion events. As noted previously, SNARE

complex formation is considered the final step in promoting membrane fusion. Short

range paring of vesicle (v-SNARE), target (t-SNARE) and SNAP-25 proteins to form

high affinity four helical bundles promotes contact between the lipid bilayers of two

membranes (164166). The N-terminal domains of some SNARE proteins and the Sec1"'

like family of t-SNARE inhibitors reduce SNARE complex formation and aid in fusion

specificity (167- 169). The N-terminal domain of the yeast t-SNARE Ssolp is essential;

however, the constitutively open (non-inhibitory) mutant is viable, suggesting that the N-

terminal domain also possesses an activating function in vivo (170, 171). Rab effectors

and tethering complexes that interact with the SNARE or Sec1-like proteins may bridge

the gap between tethering and activation of the fusion machinery (Figure 8)

(152 172, 173).
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Figure 8. Model for the tethering and fusion of vesicles. Activated Rab GTPases
recruit tethering proteins or complexes and can interact with components of
SNAR/Sec1 complexes. Assembly of the activated SNARE complex promotes
membrane fusion. Figure adapted from Clague, 1999 (356).



In endosome fusion, recruitment of the SNARE proteins syntaxin-6 and 13 by

EEAl and binding of the Sec1-like protein Vps45 by Rabenosyn-5 may promote the

docking or "priming" stage of membrane fusion (61, 154 174). In addition, the Rabl

effector p115 interacts with syntaxin-5 while the HOPS complex contains a sec1-like

protein Vps33p and copurifies with Ypt7 and the t-SNARE Vam3p (175- 179). Vps51p

of the GARP complex also associates with the N-terminal domain of the t-SNARE Tlgl P

(180 181). More information is necessary in order to understand the requirements of

vesicle priming as well as potential differences between homotypic and heterotypic

fusion with respect to docking and fusion events.

Combinatoril interactions generate specificity

It is evident that Rab GTPases and their effectors can act at many different stages

in membrane trafficking. Fusagenic microdomains that amplify individual low affinity

interactions allow positive recruitment of like components, shiftng the membrane steady

state to a particular function. Synthesis of phosphatidylinositol-(3)-phosphate

(Ptdlns(3)P) by the Rab5 effector hVps34 generates the lipid environment necessary for

recruitment of FYVE domain containing proteins to endosomes (182- 184). The

recruitment of tethering factors like EEA1 , which requires Ptdlns(3)P for localization

contribute to the biogenesis of endosome membranes. Subsequent recruitment of

SNARE proteins by EEAl promotes the tethering and fusion of endosomal vesicles from

the plasma membrane (154 162 163 174 185). The presence of a number of effectors

with dual Rab binding capabilities may provide a mechanism for sorting cargo, such as
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surface receptors, to distinct compartments. The Rab5 effectors Rabenosyn-5 and

Rabaptin-5 also interact with Rab4 present on recycling endosomes, and Rab4, Rab5 , and

Rab11 positive membranes exist as a distinct but dynamic population (57, 155). In

addition, signaling may be halted by ubiquitin ligation of activated receptors and

subsequent transport steps that promote receptor degradation (186- 188).

It has become more evident that localization of activated receptors, such as

receptor tyrosine kinases (RTKs), serine/threonine kinases (STKs) and G-protein coupled

receptors (GPCRs), to the endosome can alter the relative strengths of different signaling

pathways beyond receptor down-regulation by degradation (189). For example, a block

in internalization of the EGFR to endosomes results in decreased Erkl phosphorylation

and increased phosphorylation of phospholipase Cy (190). Redistribution of a number 

signaling molecules, such as the EGF dependent Shc, Grb2 and mSOS, as well as the

Ras-MAPK cascade components Raf, MEK and ERK suggests persistence of signaling

from the endosomal compartment (191- 194). Other signaling pathways are endosomal

specific, including the nerve growth factor (NGF) activation of Rapl on endosomes,

which promotes differentiation of PC12 cells rather than proliferation. Also, endosomal

localization of transforming growth factor-(3 (TGF(3) involving Smad anchor for receptor

activation (SARA) is essential for activation of Smad proteins (195- 197).

Endosomal targeting of SARA and the ubiquitin binding protein hepatocyte

receptor tyrosine kinase substrate (Hrs), also necessary for receptor degradation, occurs

through PtdIns(3)P binding to FYVE domains as previously discussed for EEAl

(187, 198, 199). In addition, (3-arrestin2 interacts with clathrin to promote GPCR
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internalization and serves as a scaffold for jun-kinase 3 (JNK3) and other upstream

activators at the endosome (200-202). In these ways , membrane trafficking can amplify

potential responses to signaling proteins by utilizing the spatial and temporal controls

provided by compartmentalization. Signaling pathways can also influence the transport

machinery, allowing feedback regulation of receptor trafficking (189,203).

Rab5: Master Regulator of Endocytosis

Analysis of Rab5 and its function in EGFR endocytosis has provided the most

detailed example of Rab localization and function in signal transduction

(11, 152, 189,203). Yeast genetics, in vitro reconstitution assays and in vivo

localization studies, as well as the identification of more than 20 Rab5 specific effectors

implicate Rab5 in each step of endocytosis from clathrin coated pit formation to

enhancement of SNARE mediated fusion (57 204-206). Rab5 also defines a paradigm

for Rab mediated nucleation of membrane subdomains through positive recruitment of

cytoplasmic proteins, creating a steady state environment consistent with endosome

function. Rab5 mediated interactions are also fundamental to organelle biogenesis, as

Rab5 deletion results in reduction of endosomal membranes whereas overexpression of a

constitutively active Rab5 mutant leads to an enlarged endosomal compartment

(16,46,50).

Ligand dependent EGFR activation results in dimerization and tyrosine kinase

activity that promotes cellular proliferation and differentiation; stimulation also triggers

Rab5 activation and rapid receptor internalization (Figure 9) (207-209). Phosphorylation



I TGFjl

(J .eus

EGFR

Figure 9. Early endosomal sorting and signaling. Different scaffold complexes
reside at different subcellular comparments. This comparmentalization of signal-
ing modules might be used to define a specific biological signal. In addition to the
scaffold molecules, other signaling adaptors such as SARA have been found to
localize on endosomes. Figure adapted from Teis et aI., 2003 (189).
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of the clathrin heavy chain , c-Cbl and Src as well as recruitment of Eps8, Eps15 and the

AP2 complex allow subsequent engagement of clathrin coat components promoting

formation of clathrin coated pits (210-215). Additional recruitment of the PI3K

p100(3/p85 and phospholipase Cy results in increased Ptdlns(3,4,5)P and Ptdlns(4 5)P

production and recruitment of additional phospholipid specific signaling and trafficking

factors including dynamin, epsin, Grb2 , and Akt (189 207,216,217). Internalization of

EGF receptors to clathrin coated vesicles (CCVs) is increased by overexpression of Rab5;

however, receptor signaling persists throughout endocytosis and endosome fusion

(209 218). Downstream targets of Grb2, Src and Eps8, such as Ras and MAPK

pathways , also respond to receptor internalization to direct trafficking through feedback

loops (189). The Rab5 specific GEF activity of RINI is regulated by Ras whereas RN-

tre, a Rab5 GAP, can be recruited to the plasma membrane by the EGF receptor substrate

Eps8 (218,219). p38 MAPK has also been shown to phosphorylate RabGDI , accelerating

extraction of Rab5 from membranes (220).

Rab5 promotes vesicle transport to the endosome likely through a minus end

directed kinesin motor, and recruits the PI3K hVps34, increasing the levels of Ptdlns(3)P

on endosomal membranes (52,221). The specific interaction between Ptdlns(3)P and the

FYVE domain promotes recruitment of the Rab5 effectors EEAl and Rabenosyn-5 in

addition to other signaling proteins such as SARA (61 182 197,222 223). These factors

stabilze endosomal membranes and promote fusion of CCV s with endosomes. EEA 

has a modular architecture with aN-terminal C2H2 Zn2+ finger, an extended heptad

repeat, and a C-terminal region containing a calmodulin binding (lQ) motif, a Rab5
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binding site, and a FYVE domain (182 185,224 225). In cell free reconstitution assays,

EEAl is essential for fusion of early endosomes and is thought to function as an

endosomal tethering factor (162 174 226,227).

After delivery to endosomes, activated receptors are sorted to the late endosome/

multivesicular body (MVB) and ultimately targeted for degradation at the lysosome

(189). Accumulation of Ptdlns(3)P in endosomal membranes and ubiquitination of

receptors by the E3 ligase c-Cbl promotes recruitment of Hrs through its FYVE domain

and ubiquitin interaction motif (UIM), respectively (228-230). Subsequent binding of the

ESCRT complex and TSG 101 promote vesicle budding and sorting of ubiquinated

receptors to the MVB (231-233). Ina tive receptors and other factors targeted for the

plasma membrane are postulated to return through transport steps involving Rab5

effectors like Rabenosyn-5 and Rapabtin-5 that also contain binding sites for RaM, aRab

GTPase found on the recycling endosome. Rabaptin-5 forms a complex with the Rab5

GEF Rabex-5 and interacts with Golgi-associated y-adaptin related ADP-ribosylation

factor binding proteins (GGAs) suggesting that the Rabex-5/Rabaptin-5 complex may

also function in vesicular transport from the TGN to endosomes. Consistent with this

idea, EEAl has also been shown to interact with the Golgi/endosome targeted Rab22.

The wealth of information available with respect to Rab5 and its well-established role as

a critical master regulator of endocytosis make the early endocytic machinery an

excellent model system for understanding the structural mechanisms underlying Rab

GTPase function.
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Strctural Mechanisms of Rab Mediated Vesicle Transport

As critical regulators of vesicular trafficking, Rab proteins comprise the largest

GTPase family, with thirty-eight functionally distinct members and another twenty

isoforms in the human genome. The specificity of Rab interactions with effectors and

regulatory factors plays a central role with respect to the fidelity of membrane trafficking.

The crystallographic studies of the Rab3A/Rabphiln-3A complex discussed above led to

the hypothesis that the relatively conserved switch regions convey information regarding

the state of the bound nucleotide whereas independent Rab CDRs determine the

specificity of Rab/effector interactions (Figure 5B). Chapter II of this thesis describes the

crystal structure of Rab5 bound to GppNHp and shows that the switch regions of Rab5C

and Rab3A do not encode the same active conformation. In particular, the switch

interface adopts a dramatically different conformation in Rab5 such that the resulting

hydrophobic surface is non-complementary to the Rab3 effector Rabphiln-3A. Thus,

structural plasticity within the relatively conserved switch regions is evolutionarily

coupled to the conformational switching mechanism and represents a general determinant

of Rab-effector recognition.

Activated Rab GTPases interact with effector proteins involved in vesicle

formation, transport, tethering, docking and fusion. Using Rab5 mediated endocytic

transport as a model system, I have gained insight into the structural basis for interaction

of effectors and regulatory factors with Rab GTPases. The FYVE domain targets the

Rab5 effector EEAl to the endosome where it has been proposed to function as a

tethering factor (154 162 163 174 185). In chapter III of this thesis, the highly organized



quaternary structure of the homodimeric C-terminal region of EEA 1 provides insight into

the structural basis underlying the targeting of EEAl to early endosomes. In addition

characterization of truncation and site specific mutants of the EEAl N-terminus

demonstrates that the C2H2 Zn2+ finger of EEAl is suffcient to mediate association with

activated Rab5. These observations suggest that the structural organization of the EEAl

homodimer is ideally configured for multivalent membrane engagement, providing

insight into the structural basis of endosome tethering.

In chapter IV of this thesis, structural and biochemical approaches were employed

to examine the mechanism of Rab5 activation. A consensus GEF interaction epitope,

derived from the crystal structures of four mammalian GEF-GTPase complexes, suggest

some determinants of Rab GTPase recognition by GEFs may be general. A central 260

amino acid fragment of Rabex-5, containing a Rab5 GEF domain homologous to Vps9,

was isolated and demonstrates robust GEF activity for Rab5C. The crystal structure of

this fragment reveals a novel fold for the conserved Vps9 homology region, which

corresponds to a sub-domain within the context of an integrated tandem domain

architecture. Acidic, hydrophobic, and polar residues on a conserved surface of the Vps9

domain are shown to be critical for exchange activity. A quantitative family-wide

analysis of Rab specificity demonstrates that the central catalytic fragment of Rabex-

has selective exchange activity for Rab GTPases of the Rab5 sub-family. The conserved

surface of the Vps9 domain has limited though potentially significant structural

similarities with the Sec7 GEF domain of Geal , which interacts with Arf GTPases

through contacts with the switch regions (234-236).



CHAPTER II

STRUCTURAL PLASTICITY OF AN INVARANT HYDROPHOBIC

TRIAD IN THE SWITCH REGIONS OF RAB GTPASES IS A

DETERMINANT OF EFFECTOR RECOGNITION

Summary

Rab GTPases function as regulatory components of an evolutionarily conserved

machinery that mediates docking, priming and fusion of vesicles with intracellular

membranes. Previously published work from the Lambright lab has shown that the active

conformation of Rab3A is stabilzed by a substantial hydrophobic interface between the

putative conformational switch regions (18). A triad of invariant hydrophobic residues at

this switch interface (Phe59, Trp76 and Tyr91) represents a major interaction determinant

between the switch regions of Rab3A and the Rab3A specific effector Rabphiln-3A (90).

Here, I report the crystal structure of the active form of Rab5C , a prototypical endocytic

Rab GTPase. Like Rab3A , the active conformation of Rab5C is stabilzed by a

hydrophobic interface between the switch regions. However, the conformation of the

invariant hydrophobic triad (residues Phe58, Trp75 and Tyr90 in Rab5C) is dramatically

altered such that the resulting surface is non-complementary to the switch interaction

epitope of Rabphiln-3A. This structural rearrangement reflects a set of non-conservative

substitutions in the hydrophobic core between the central (3 sheet and the a2 helix. These



observations demonstrate that structural plasticity involving an invariant hydrophobic

triad at the switch interface contributes to the mechanism by which effectors recognize

distinct Rab subfamilies. Thus , the active conformation of the switch regions conveys

information about the identity of a particular Rab GTPase as well as the state of the

bound nucleotide.

This chapter contains work previously published in Merithew et aI., 2001 (237).

Initial Rab5C constructs were generated by Robin Heller-Harrison (Czech lab) and

diffraction quality crystals were generated by Scott Hatherly. Extensive comparisons

were made to the structure of Rab3A determned by John Dumas (18).



1..
Introduction

As general regulators of intracellular vesicle transport between donor and

acceptor membranes , Rab proteins comprise the largest GTPase family with eleven

distinct homologues in yeast and 38 distinct Rab GTPases in mammals

(5, 13, 166 238). Like other GTPases of the Ras superfamily, Rab proteins cycle

between active (GTP bound) and inactive (GDP bound) conformations (5 87). A key

question concerns the molecular and structural mechanisms by which Rab GTPases

generate specificity for a diverse spectrum of effectors and regulatory factors.

Biochemical and genetic studies of chimeric and mutant Rab proteins have identified

several hypervariable regions, including the N/C-termini and the a3/(35 loop, that play an

important role in determining functional specificity (69 92). However, interactions

involving hypervariable regions can not explain the abilty of RabGDI to recognize most

or all Rab GTPases , yet stil discriminate against other GTPase families, or the ability of

certain regulatory factors to recognize particular Rab subfamiles (93-96). These

observations imply the existence of specificity determinants that are common to all Rab

GTPases , but not other GTPase familes, as well as determinants that are conserved only

within particular Rab subfamiles.

Crystallographic studies have identified structural motifs and modes of effector

interaction that are distinct from those of other GTPase familes. The active

conformation is stabilzed by additional hydrogen bonding interactions with the y

phosphate of GTP, mediated by serine residues in the P-Ioop and switch I region, as well

as an extensive hydrophobic interface between the switch I and II regions (18,239). The



structure of the complex between a constitutively active mutant of Rab3A and a putative

effector, Rabphiln- , revealed an interaction epitope that extends from the relatively

conserved switch interface to an adjacent pocket formed by three hypervariable

complementary determining regions (CDRs) corresponding to the N- and C-termini of

the GTPase domain and the a3/(35 loop (90). A triad of invariant hydrophobic residues at

the switch IIswitch II interface of Rab3A mediates a central interaction with Rabphiln-

3A. In a recent analysis of the primary structure of all known Rab GTPases, five

distinctive motifs (termed Rab family motifs or RabFs) were identified that distinguish

Rab proteins from other GTPase familes (48). The RabF motifs are located either in the

putative switch I and II regions or in the adjacent (33 and (34 strands. It was also noted

that the Rab family could be further subdivided based on the presence of four subfamily

motifs (RabSFs), which include all three Rab CDRs as well as a region corresponding to

the al helix and most ofthe al/(32Ioop.

Rab5 is an essential regulator of early endosome fusion (50,240). Several

putative Rab5 effectors have been identified including EEA1 , a large protein consisting

of an N-terminal Zn2+ finger, four long heptad repeats having weak homology with

myosins , and a compact C-terminal region containing an IQ motif (putative calmodulin

binding site), Rab5 interaction site and a FYVE domain that specifically binds Ptdlns(3)P

(162 182 185,225 241-243). Interactions with both PtdIns(3)P and Rab5 are essential for

fusion of endocytic vesicles with early endosomes in an in vitro reconstitution assay

(226,227). Although lacking the corresponding C-terminal regions, the FYVE domain of

EEAl is structurally similar to the ring finger domain of Rabphiln-3A (24). Moreover
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a predicted helical region N-terminal to the FYVE domain of EEAl exhibits weak

homology with the N-terminal helix of Rabphiln-3A and has been implicated in the

interaction with Rab5 (162 245). However, critical hydrophobic residues in Rabphiln-

3A are not conserved in EEA1. Thus, the extent to which the Rab3A/Rabphiln-

complex can be regarded as a paradigm for other Rab-effectors complexes remains

uncertin (24).

The crystallographic and biochemical studies cited above are consistent with the

hypothesis that the relatively conserved switch regions convey information regarding the

state of the bound nucleotide whereas independent Rab CDRs determine the specificity of

Rab/effector interactions. Here, I report the crystal structure of Rab5 bound to GppNHp.

Despite strong homology, the characteristic RabF motifs in the switch regions of Rab5

and Rab3A do not encode the same active conformation. In particular, the invariant triad

of partially exposed hydrophobic residues located at the switch IIswitch II interface

adopts a dramatically different conformation in Rab5 such that the resulting hydrophobic

surface is non-complementary to Rabphiln-3A. These changes reflect an alternative

packing arrangement in response to a concerted set of non-conservative substitutions in

the hydrophobic core. Moreover, the packing constraints on the conformation of the

invariant hydrophobic triad appear to be engaged only in the active form. Thus,

structural plasticity within the relatively conserved switch regions is evolutionarily

coupled to the conformational switching mechanism and represents a potentially general

determinant of Rab-effector recognition.



Experimental Procedures

Expression and Purifcation. The GTPase domain of Rab5C (residues 16- 186)

was expressed in E. coli using a modified pET15b vector containing an N-terminal

lOxHis peptide (MGHHHHHHHHHHGS). BL21(DE3) cells harboring the modified

pET15b plasmid containing the Rab5 insert were grown at 37 C in 2xYT media, induced

at an OD600 of ,..6 by addition of 1 mM IPTG and harvested after 3 hours at 37 C. The

cell pellet was resuspended in 50 mM Tris, pH 8.5 , 0. 1 % 2-mercaptoethanol , lysed by

sonication, centrifuged at 35,000xg for 1 hour and the supernatant loaded onto a NiNT A-

agarose column (Qiagen). After washing with ten column volumes of 50 mM Tris, pH

8.5, 500 mM NaCI , 10 mM imidazole, 0. 1 % 2-mercaptoethanol, the fusion protein was

eluted with a gradient of 10-500 mM imidazole. The protein was further purified by ion

exchange chromatography on Resource Q and Resource S (Pharmacia) followed by gel

fitration on Superdex-75 (Pharmacia). Roughly 30 mg of :;99% pure protein were

obtained from a 6 L culture.

Crystallzation and Data Collection. The GppNHp bound form of Rab5C was

prepared as described for Rab3A (18). Crystals of the Rab5-GppNHp complex were

grown at 4 C by vapor diffusion in hanging drops containing 10% PEG-6000, 50 mM

MES, pH 6.0, 0.2 M NaCl , 0.5 mM MgCl2 and 0. 1 % 2-mercaptoethanol. Single crystals

appeared overnight and grew to maximum dimensions of 0.3 x 0.3 x 0.2 after several

days. The crystals are in the primitive orthorhombic space group P21 21 with cell

constants a = 35.9 A, b = 64.0 A and c = 65.9 A. The volume of the unit cell is consistent

with one molecule in the asymmetric unit and a solvent content of 35%. Crystals were



soaked for five minutes at 4 C in a cryoprotectant-stabilzer solution (30% PEG-6000

and 20% glycerol) prior to flash freezing in a nitrogen cryostream. A native data set

complete to 1.8 A was collected on a Rigaku RUH3R/Mar 30 cm image plate detector

equipped with focusing mirrors (Charles Supper). The crystal was maintained at 100 o

using a nitrogen cryostream (Oxford Cryosystems). All data were processed with Denzo

and scaled with Scalepack (247).

Structure Determination and Refinement. The structure of GppNHp-bound

Rab5C was solved by molecular replacement using a polyalanine search model derived

from the coordinates of the Rab3A structure (18). A translation search including the top

50 rotation function solutions yielded a unique solution with an R-value of 50.5% after

rigid body refinement against data from 8 - 3 A. Initial difference maps calculated with

Sigma A weights to reduce model bias revealed poor density for the putative switch I and

II regions and several loop regions. Multiple rounds of simulated annealing and manual

fitting were interleaved with gradual extension of the resolution to 1.8 A. Manual fitting

of the omitted regions and placement of the side chains was followed by additional

rounds of simulated annealing, positional and B factor refinement. The final refined

model includes residues 19 to 182, one molecule of GppNHp, a Mg2+ ion, 153 ordered

water molecules and has a crystallographic R value of 0. 198 and a free R value of 0.246

based on a 5% subset of reflections randomly omitted prior to refinement. Molecular

replacement was conducted with AMORE as implemented in CCP4, refinement with X-

PLOR and interactive model building with 0 (248-251). Structural images were
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generated with MOLSCRIPT or GRASP, combined with GL RENDER (Dr. L. Esser)

and rendered with RASTER 3D (252-255).

Other crystallographic models. For comparison with Rab5C, models for Rab3A

Ypt51 , Rab6 and the Rab3A/Rabphilin-3A complex were rendered from the coordinates

of the corresponding crystal structures (PDB ID codes 3RAB , lEKO, ID5C , and lZBD

respectively).
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Results

Overall Structure and Comparison with other Rab GTPases. 
The GTPase domain

of Rab5C bound to GppNHp was crystallzed and the structure determined by molecular

replacement (Table 3). The final refined model , which includes residues 19- 182, one

molecule of GppNHp, a Mg2+ ion and 153 ordered water molecules, has a working R

value of 0. 198 and free R value of 0.246. The stereochemistry is excellent and there are

no backbone torsion angles outside allowed regions of the Ramachandran plot. Residues

16- 18 at the N-terminus, residues 65-69 in the (32/(33 loop and residues 183-186 at the C-

terminus are poorly ordered.

Like other members of the GTPase superfamily, Rab5C posses a characteristic

nucleotide binding fold consisting of a six-stranded (3 sheet surrounded by five a helices

(Figure 10). In the absence of a structure for the GDP-bound form of Rab5C, a precise

definition of the conformational switch regions is not possible. However, a comparison

of the GppNHp-bound structure of Rab3A with that of the GDP-bound form of Rab6

from the malaria parasite Plasmodium falciparum 
suggests that the conformational

changes accompanying nucleotide exchange wil be localized to regions analogous to

those in p21 ras (256). As a working hypothesis, it is assumed that the conformational

changes in Rab5 are localized to the corresponding regions, although the precise nature

and extent of the conformational changes wil not alter the observations described below.

To faciltate discussion, Rab CDRs wil be referenced as defined for Rab3A based on the

complex with Rabphiln-3A (90). Whether these and/or other variable regions mediate

effector interactions with Rab5C remains to be determined.



Figure 10. Overall structure of Rab5C. Ribbon representation of the Rab5C
structure with the putative switch regions highlighted in green, the regions COlTe-

sponding to the CDRs of Rab3A in light blue and the nucleotide in yellow.
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Table 3. Rab5C: Structure Determination and Refmement

Data CoUectiona

Resolution (A)

sym b

-cI/CD

Completeness (%)

20 - 1. 
054 (0.227)

20.3 (5.4)

98.8 (94.
Molecular Replacement

120.6, 14.3, 347.4
101 026, 0.476

Highest Peak Highest False Peak
32.9 17.

Refinement

Euler Angles (Ql , Q2, Q3)
Fractional Coordinates (x, y, z)

Correlation Coeffcient

RMS Deviations
Resolution (A) R factor Rfree d

8 - 1.8 195 232

Bond
Length

006 A

Bond
Angle

1.2

aValues in parentheses represent the highest resolution shell.

sym = 
j Ilj(h) - -d(h) 1 / j Ij(h).

cValues after rigid body refinement from 8.0 - 3.0 A.

dR-value for a 5% subset of reflections selected at random and omitted from refinement.



Although the overall fold of Rab5C resembles that of Rab3A, significant

structural differences are evident throughout the GTPase domain (Figure 11). The

structures are most similar in the regions in contact with the nucleotide whereas the

largest differences occur in or adjacent to regions implicated in the interaction with

effectors and/or regulatory factors. The GTPase domains of Rab5C and Rab3A share

37% sequence identity overall; however, the homology within the switch regions is

considerably higher. For example, the switch II regions of Rab5C and Rab3A are 63%

identical and substitutions are either conservative or occur at exposed positions.

Moreover, the majority of intramolecular interactions with the switch II region involve

residues from the highly conserved RabF motifs. Interestingly, the magnitude of the

displacement of Ca atoms does not strictly correlate with sequence variabilty. Indeed,

the displacements in the relatively conserved switch II region are considerably larger than

the overall RMS deviation and comparable to the displacements in the poorly conserved

a4 helix. Moreover, the largest main chain rearrangement within the switch II region is

centered on an invariant tyrosine residue in one of the highly conserved RabF motifs.

The origin and functional consequences of these changes with respect to effector

recognition are considered below.

Structural Variabilty in the Rab CDRs. Although the large structural differences

in the variable Rab CDRs is due in part to inherent disorder in the absence of interactions

with effectors , critical changes can be attributed to specific sequence determinants. For

example, proline residues from a PXXXP motif in Rab5 result in an a5 helix that is

truncated by two turns relative to Rab3A. The additional turns of the a5 helix in Rab3A
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Figure 11. Comparison of the active conformations of endocytic and exocytic
Rab GTPases. (A) Superposition of the Rab5C structure (blue) with the structures
of Rab3A alone (purple), the yeast Rab5 homologue Ypt51 (semi-transparent blue)
and Rab3A from the complex with Rabphiln-3A (semi-transparent purple). The
superposition is based on Ca atoms. Models for Rab3A alone (18), Ypt51 (239)
and Rab3A from the Rab3A/Rabphiln-3A complex (90) were derived from the
coordinates of the corresponding crystal strctures. (B) Distance between pairs
of Ca atoms in the Rab5C and Rab3A structure following superposition. Also
shown is the secondar structure, with the putative switch regions highlighted in
magenta and the CDRs of Rab3A in orange.



comprise an essential element of the binding pocket for a C-terminal hydrophobic motif

in Rabphiln-3A (90). The differences in backbone conformation are furter augmented

by non-conservative substitutions in which hydrophobic residues in Rab3A are

substituted for charged or polar residues in Rab5. Thus, the specificity of effector

interactions with the Rab CDRs is determined by backbone conformational constraints as

well as stereochemical and electrostatic complementarity of the relevant molecular

surfaces. These specificity determinants are strongly correlated with a high degree of

variabilty in the sequences comprising the Rab CDRs.

Structural Rearrangement of an Invariant Hydrophobic Triad at the Switch

Region Interface. As shown in Figures 12A and B, a triad of invariant hydrophobic

residues encoded by three of the characteristic RabF motifs undergoes a dramatic

structural rearrangement. In Rab5, the aromatic ring of Tyr91 in the switch II region is

buried in the hydrophobic core formed between the switch regions and the central (3 sheet

while the aromatic ring of Phe58 in the (32 strand is partially buried, leaving the indole

ring of Trp75 in the (33 strand significantly exposed. In this packing arrangement, the

aromatic rings of Trp75 and Tyr91lie in Van der Waals contact with the methyl group of

Ala 56 in the switch I region. Consequently, the conformation adopted by the invariant

hydrophobic triad in Rab5 requires a residue with a small side chain at position 56. 

Rab3A, a non-conservative alanine to isoleucine substitution at the corresponding

position displaces the aromatic side chains of Tyr91 and Trp76. The displacement of

Trp76 in turn forces the side chain of Phe59 to adopt an alternative rotomer

conformation. Thus, the aromatic side chains of Tyr91 and Phe59 in Rab3A protrude
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Figure 12. Structural rearrangement of an invariant hydrophobic triad at the
switch region interface. (A) Semi-transparent molecular surface of Rab5C in the
vicinity of the invarant hydrophobic triad (Phe58, Trp75 and Tyr90). (B) Semi-
transparent molecular surface of Rab3A (18) in the vicinity of the invarant hydro-
phobic triad (phe59 Trp76 and Tyr91). (C) Overlay following superposition of C a
atoms in the independently determined active structures of Rab5C (blue and
orange), Ypt51 (semi-transparent blue and orange), Rab3A alone (gray and purple)
and Rab3A from the complex with Rabphiln-3A (semi-transparent gray and
purple). Models for Rab3A alone (18), Ypt51 (239) and Rab3A from the Rab3A
Rabphiln-3A complex (90) were derived from the coordinates of the corresponding
crystal structures. (D)crA weighted 2Fo-Fc map countered at 1.2cr showing residues
in the vicinity of the invariant hydrophobic triad.
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from either side of the indole ring of Trp76, which is considerably more buried than its

counterpart in Rab5. Despite the dramatic conformational rearrangement of the invariant

hydrophobic triad, the alternative packing arrangement in Rab5 preserves the

hydrophobic interface between the switch regions.

Due to crystal contacts involving the hydrophobic surfaces at the switch interface,

it is reasonable to question whether the observed active conformations might be

infuenced by crystal packing or by engagement with effectors. Several lines of evidence

indicate that the structural plasticity of the invariant hydrophobic triad is not 

crystallographic artifact but rather an inherent property of Rab GTPases. First, the

hydrophobic triad in the independently determined structure of the yeast Rab5

homologue Y pt51 (239) adopts a nearly identical conformation despite crystallzing in a

different space group (Figure 12C). This observation eliminates crystal packing as a

likely explanation. Second , the conformation of the invariant hydrophobic triad in

Rab3A is not altered by the interaction with Rabphiln-3A (90), indicating that these

residues are pre-oriented (Figure 12C). Consistent with this observation , the side chains

of the invariant triad are well ordered due to intramolecular packing constraints (Figure

12D). Finally, as described below , a concerted set of non-conservative substitutions in

the hydrophobic core between the switch regions and the central (3 sheet provides a

simple and plausible explanation for the observed structural rearrangement.

Sequence Determinants of the Active Conformation. As ilustrated in Figure 13,

exocytic Rab GTPases conserve either valine or isoleucine at the equivalent of position

57 in Rab3A whereas a subset of endocytic Rab GTPases (Rab5, Rab7 , Rab20, Rab21
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Rab22 and Rab24) substitute residues with small side chains (alanine or glycine). In

yeast, the distinction is absolute: all exocytic Rab homologues conserve an isoleucine or

valine and all endocytic Rab homologues conserve an alanine. Although the alanine 

isoleucine substitution in the switch I region represents an obvious proximal determinant

of the observed differences , other non-conservative substitutions could contribute to

stabilzation of the alternative conformation.

In order to determine whether the conformation of the invariant hydrophobic triad

is likely to vary from one Rab to another or simply reflects two general arrangements
, I

have systematically analyzed each position in or adjacent to the switch regions. Residues

were segregated into three groups based on the sequences of all known Rab GTPases and

the available structural data for the active conformations of Rab3A and Rab5. The first

group includes invariant residues as well as residues that are conservatively substituted.

Although not determinants of the active conformation, it is nevertheless clear that

structural rearrangements involving conserved residues (e.g. the invariant hydrophobic

triad) can mediate and amplify the effects of adjacent non-conservative substitutions.

The second group consists of non-conservative substitutions of residues that occupy

solvent exposed positions. Such substitutions could well contribute to the traditional

mechanism of specificity determination; however, the effects are not expected to

propagate to beyond the immediate vicinity. The third group corresponds to non-

conservative substitutions of residues that are substantially buried in either the Rab3A or

Rab5 structures. The effects of such substitutions wil necessarily propagate to

surrounding regions and thus have the potential to be key conformational determinants of



specificity. A surprising number of non-conservative substitutions occur at interior

positions. As shown in Figure 14, the majority of such substitutions involve a cluster of

hydrophobic residues situated in the hydrophobic core formed between the switch

regions, the (31-(3 strands and the a3 helix. Substitutions at these positions are concerted

and , to a first approximation, can be correlated with the overall similarity in the GTPase

domains of the previously identified Rab subfamilies (48).

Structural Plasticity in the Switch Regions is a Determinant of Effector

Recognition. As shown in Figure 15, the invariant hydrophobic triad represents a major

site of interaction between Rabphiln-3A and the switch regions of Rab3A (90). The

protruding aromatic side chains of Phe59 and Tyr91 engage complementary hydrophobic

surfaces in Rabphiln-3A. Due to the structural rearrangement described above, the

corresponding surface in Rab5 is non-complementar to the switch interaction epitope of

Rabphiln-3A. These observations clearly demonstrate that structural plasticity involving

a partially exposed invariant hydrophobic triad contributes to the specificity of Rab-

effector interactions. Thus , in addition to signaling the state of the bound nucleotide, the

active conformation of the switch regions conveys iQformation about the subfamily of a

partcular Rab GTPase.

A General Model for Activation of Rab GTPases. The recent crystal structure of a

GDP bound Rab6 homologue provides the opportunity to assess whether the structural

changes accompanying activation are likely to influence the conformation of the invariant

hydrophobic triad (256). Interestingly, the invariant hydrophobic triad in GDP-bound

Rab6 adopts a conformation distinct from that of the active forms of either Rab3A or
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Figure 14. Location of non-conservative substitutions predicted to influence
the active conformation of invariant residues in the switch regions. (A) Rab5.
(B) Rab3A from the GppNHp-bound structure (18). Varable residues are highlight-
ed in green and invarant residues in purple. The view is from the interior of the
protein.
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. Figure 15. Complementarity of the invariant hydrophobic triad in Rab3A and
Rab5C with the switch region interaction epitope of Rabphilin-3A. (A) Molecu-
lar surface of Rabphilin-3A in contact with the switch regions of Rab3A (orange and
purple). (B) Hypothetical Rab5C/Rabphiln-3A interface following superposition of
Rab5C (blue and green) with Rab3A. Note that the alternative conformation of the
invariant hydrophobic triad in Rab5C lacks complementarty with Rabphiln-3A.
The Rabphiln-3A and Rab3A models in this figure were generated from the coordi-
nates of the Rab3A/aphiln-3A structure (90).
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Rab5 (Figure 16). In particular, the conformation determining isoleucine in the switch I

region and invariant tyrosine in the switch II region are displaced relative to their

counterparts in Rab3A and Rab5. Although the main chain atoms of the invariant

tryptophan and phenylalanine are not substantially displaced, the aromatic side chains of

these residues adopt different rotomer conformations. Moreover, crystallographic and

NMR studies of a large number of GTP binding proteins support the general conclusion

that the switch regions are highly flexible in the GDP bound form but adopt specific

ordered conformations in the GTP bound form due to the additional hydrogen bonding

interactions with the y phosphate (17). These observations suggest a simple structural

model for activation of Rab GTPases , leading to distinct active conformations for each

Rab subfamily. Upon GTP binding, an extensive hydrophobic interface forms between

the switch I and II regions. The formation of this interface engages the aromatic side

chains of the invariant hydrophobic triad in a Rab subfamily specific conformation

determined by Van der Waals interactions with the critical conformation determining

residues in the hydrophobic core. Finally, the presence of a substantial exposed

hydrophobic patch adjacent to the Rab CDRs suggests that the nucleotide dependent

engagement of the invariant hydrophobic triad could playa general role in Rab activation

and effector recognition.



-- 

Figure 16. Distinct conformations for the invariant hydrophobic triad in the
active and inactive forms of Rab GTPases. Overlay following superposition of
Ca. atoms in GppNHp-bound Rab3A (blue and purple) and GDP-bound Rab6 (gray
and orange). The Rab3A and Rab6 models in this figure were generated from the
coordinates of the GppNHp-bound Rab3A (18) and GDP-bound Rab6 structures
(256).



Discussion

Given the large number of Rab GTPases, it is plausible that the structural

plasticity of the invariant hydrophobic triad evolved primarily as a mechanism to

augment other specificity determining interactions with the Rab CDRs. In addition to the

obvious implications with respect to effector interactions, differences in the active

conformation of the invariant hydrophobic triad could potentially contribute to the

specificity of interactions with Rab GAPs (123- 125,257-259). On the other hand,

comparison of the GppNHp-bound Rab5C and Rab3A structures with the GDP-bound

Rab6 structure suggests that the constraints on the conformation of the invariant

hydrophobic triad are engaged only in the active form (18,256). Consequently, the

conformation of the invariant hydrophobic triad is unlikely to affect the specificity of

interactions with GDI , GEFs, GDFs or other factors that interact with the GDP-bound

form (33,93, 100, 104, 105, 120,260-264). Indeed, one or more residues from the invariant

hydrophobic triad could well contribute to the interaction with Rab GDI, which

recognizes the GDP-bound conformation of all Rab GTPases (93).

The use of invariant hydrophobic residues in the switch regions as nucleotide

dependent recognition determinants appears to be unique to the Rab family. For

example, invariant hydrophobic residues in the switch II region of heterotrimeric G

protein a subunits engage hydrophobic residues in the a3 helix with little or 

difference in conformation in the crystal structures of the active forms of GtCX Gia and

(265-267). Interestingly; however, the specificity of the G interaction with

adenylyl cyclase is primarily due to a conformational rearrangement in the a3/(35 loop



(compared with Gia which does not interact with the same site on adenylyl cyclase)

rather than differences in the composition of residues in the effector interaction epitope

(267). Thus, in both Rab GTPases and G subunits, conformational plasticity of

invariant residues provides a structural mechanism that propagates and amplifies the

effects of key non-conservative amino acid substitutions. It is likely that similar

structural mechanisms of specificity determination have evolved in other large protein or

domain familes.

When compared with other Rab family GTPases, the Rab5 structure provides

compellng evidence for an evolutionarily conserved mechanism of effector recognition

in which the structural plasticity of an invariant hydrophobic triad at the switch region

interface is coupled to non-conservative substitutions in the hydrophobic core. The

conformation of the invariant hydrophobic triad reflects the state of the bound nucleotide

as well as Rab subfamily identity and thus appears to be an integral component of the

switching mechanism. Although the extent to which Rab effectors other than Rabphiln-

3A wil interact with the invariant hydrophobic triad remains to be established

experimentally, the presence of a substantial nucleotide dependent hydrophobic surface

adjacent to the Rab CDRs suggests the possibilty of a general role with respect to

activation and effector recognition.



CHAPTER III

MUL TIV ALENT ENDOSOME TARGETING BY HOMODIMERIC

EEAl AND DETERMINANTS OF RAB5 INTERACTION

Summary

EEA 1 localization to early endosomes is mediated by a C-terminal region that

includes a calmodulin binding motif, a Rab5 interaction site and a FYVE domain, which

selectively binds phosphatidylinositol 3-phosphate. The crystal structure of the C-

terminal region bound to inositol 1 bisphosphate reveals an organized quaternary

assembly consisting of a parallel coiled-coil and a dyad symmetric FYVE domain

homodimer. Structural and biochemical observations support a multivalent mechanism

for endosomal localization in which dimerization and quaternary structure amplify the

weak affinity and modest specificity of head group interactions with conserved residues.

A unique mode of membrane e!1gagement deduced from the quaternary structure of the

terminal region provides insight into the structural basis of endosome tethering.

To gain further insight into the structural determinants for endosome tethering, I

have also characterized the interaction of Rab5C with truncation and site specific mutants

of the N-terminus of EEAl using quantitative binding measurements. The results

demonstrate that the C2H2 Zn2+ finger is both essential and suficient for the N-terminal

interaction with Rab5. Although the heptad repeat C-terminal to the C2H2 Zn2+ finger
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provides the driving force for stable homodimerization, it does not influence either the

affinity or stoichiometry of Rab5 binding. Hydrophobic residues predicted to cluster on a

common face of the C2H2 Zn2+ finger playa critical role in the interaction with Rab5.

Although the homologous C2H2 Zn2+ finger of the Rab5 effector Rabenosyn-5 binds to

Rab5 with comparable affinity, the analogous C2H2 Zn2+ finger of the yeast homologue

Vac1p shows no detectable interaction with Rab5, reflecting nonconservative

substitutions of critical residues. Large changes in the intrinsic tryptophan fluorescence of

Rab5 accompany binding to the C2H2 Zn2+ finger of EEA1. These observations can be

explained by a mode of interaction in which a partially exposed tryptophan residue locat-

ed at the interface between the switch I and II regions of Rab5 lies within a hydrophobic

interface with a cluster of non-polar residues in the C2H2 Zn2+ finger of EEA 1.

This chapter contains work previously published in Dumas et al. (268), Lawe et

al. (269), and Merithew et al. (270). C-terminal EEAl constructs and diffraction quality

crystals were generated by John Dumas. Data collection, refinement and analysis of the

EEAl C-terminal structure was conducted by John Dumas, David Lambright and myself.

The FYVE domain lipid binding experiments were done by David Lambright. Craig

Stone assisted with collection of surface plasmon resonance and intrinsic tryptophan

fluorescence data as well as purification of EEAl point mutants. GST fusion constructs

for the N -terminal C2H2 Zn2+ fingers of Rabenosyn-5 and Vac 1 p were provided by

Sudharshan Eathiraj (270). EEAl C-terminal mutations that prevent Rab5 binding were

generated and analyzed by Deidre Lawe (Corvera Lab) (269).



Introduction

As master regulators of membrane trafficking, Rab GTPases cycle between active

(GTP bound) and inactive (GDP bound) conformations (4 11,59). In the active

conformation, Rab GTPases interact with diverse effectors implicated in vesicle budding,

cargo sorting, motor-dependent transport, tethering, docking, and fusion. GEFs, GAPs,

and other accessory factors, including RabGDI , provide multiple points of regulation

throughout the GTPase cycle by modulating nucleotide binding, GTP hydrolysis , and

membrane association (2). Protein kinases and phosphatases have also been implicated

in the regulation of Rab function, either directly or by phosphorylation of effectors and

regulatory factors (271-274). Thus, through regulated interactions with effectors, Rab

GTPases couple signal transduction networks to the membrane traffcking machinery.

Both fluid phase and receptor mediated endocytosis depend on activation of Rab5,

which plays a critical role in clathrin-coated vesicle formation, endosome motilty, and

early endosome fusion (275). Activated Rab5 interacts with diverse effectors, including

scafolding proteins and tethering factors, and further infuences signaling and trafficking

events by recruitment of class I and III PI3Ks to endosomes (61 120, 162,241,243). The

class III PI3K, hVPS34, selectively generates Ptdlns(3)P which binds to FYVE (fabl

TB/ZK632. c1, A1) and PX ( hagocyte oxidase homology) domains in

modular signaling and traficking proteins (182,224 225,276-281).

The Rab5 effector EEAl was identified as a Lupus autoantigen that localizes to

early endosomes (282). EEAl has a modular architecture with an N-terminal C2H2 Zn

finger, four consecutive heptad repeats, and a C-terminal region containing a calmodulin
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binding (lQ) motif, a Rab5 binding site, and a FYVE domain that binds specifically to

phosphatidy linosi tol 3 -phosphate, Ptdlns(3)P (182 185,224,225). In cell free

reconstitution assays, EEAl is essential for fusion of early endosomes (162, 174 226 227).

Endosomallocalization requires an intact FYVE domain and is sensitive to inhibitors of

PI3K activity as well as mutants of conserved residues in the FYVE domain that disrupt

Ptdlns(3)P binding (185,224 283,284). Although essential, the FYVE domain is not

sufficient for endosome targeting, which requires an additional region of ",40 amino acids

terminal to the FYVE domain (185,245). This region is also essential for Rab5

binding, suggesting that localization depends on dual interactions with Rab5 and

Ptdlns(3)P (162,245). Finally, Rab5 also binds to an independent site at the N-terminus

of EEA1 , which has recently been shown to bind Rab22 as well (162,285).

The C2H2 Zn2+ finger of EEAl shares significant homology with the C2H2 Zn

finger in the Rab5 effector Rabenosyn-5 as well as the corresponding C2H2 Zn2+ finger

in Vac 1 p, an effector of the yeast Rab5 homologue Y pt51. Like EEA 1 , Rabenosyn-5 and

Vac1p contain a FYVE domain involved in endosome targeting (61). Temperature

sensitive mutants implicate Vac1p in intervacuolar trafficking and vacuolar protein

sorting (286,287). Immunodepletion of Rabenosyn-5 blocks homotypic early endosome

fusion as well as heterotypic fusion of endocytic vesicles with early endosomes,

suggesting that Rabenosyn-5 plays a critical role distinct from that of EEAl (61). The

GTP-bound forms of Rab4 and Rab5 bind to sites in the central and C-terminal regions of

Rabenosyn-5, respectively (155). It is not known whether Rab5 binds directly to the

H2 Zn2+ finger of EEA1 , Rabenosyn-5, or Vac1p. Two hybrid data indicate that the



integrity of the C2H2 Zn2+ finger is essential for Rab5 binding to the N-terminus of

EEAl (162,288). The requirement for an intact C2H2 Zn2+ finger may reflect a direct

interaction with Rab5 or an indirect structural role. For example, the double Zn2+ finger

of Rabphiln-3A is essential for interaction with Rab3A; however, in the crystal structure

of the Rab3A/Rabphilin-3A complex, the double Zn2+ finger does not contact Rab3A but

instead supports interactions with flanking regions (90).

To determine the structural basis for domain organization, dimerization and

quaternary structure with respect to EEAllocalization and endosome tethering, we have

characterized the binding of soluble phosphoinositides to monomeric and homodimeric

constructs of EEAl and determined the crystal structure of the homodimeric C-terminal

region as a complex with the head group of PtdIns(3 )P. Reflecting a highly organized

quaternary structure, the EEAl homodimer is ideally configured for multivalent

membrane engagement. The simplest thermodynamic model for bivalent recognition of

PtdIns(3)P in a lipid bilayer quantitatively accounts for the large amplification of the

weak affinity and moderate specificity of soluble Ptdlns(3)P binding to the EEAl FYVE

domain and explains why the region preceding the FYVE domain is required for

localization to early endosomes. The mode of multivalent membrane engagement

deduced from the organized quaternary structure of the EEA 1 C-terminal region provides

insight into the structural basis of endosome tethering.

To gain further insight into the structural basis underlying the function of the

EEAl N-terminus in the tethering and fusion of early endosomes and endocytic vesicles

I have characterized the interaction of Rab5C with truncation and site specific mutants of
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EEAl using quantitative binding measurements. The results demonstrate that the C2

2+ finger is sufficient for the N-terminal interaction with Rab5C and support a mode of

interaction in which an invariant tryptophan residue, which is partially exposed at the

interface between the switch I and II regions of Rab5 , lies in or near an interface that

involves a cluster of hydrophobic residues in the C2H2 Zn2+ finger.



l-- Experimental Procedures

Constructs, expression, and purifcation. EEAl and Rab5C constructs were

amplified with Vent polymerase (New England Biolabs). EEAl constructs were sub-

cloned into a modified pET15b vector containing an N-terminal 6xHis tag

(MGHHHHHHGS). Rab5C constructs were sub-cloned into pGEX-4Tl (Amersham

Biosciences) for expression as an N-terminal GST fusion. Site specific mutants were

generated using the Quick Change Site-Directed Mutagenesis Kit (Stratagene). All

constructs and mutants were verified by sequencing the entire coding region from both 5

and 3' directions. BL21(DE3) or BL21(DE3)-RIL cells (Stratagene) were transformed

with the pGEX-4TlIRab5C or modified pETI5b/EEAl plasmids, grown in 2xYT-amp

(16 g Bacto tryptone, 10 g Bacto yeast extract, 5 g sodium chloride , and 100 mg

ampicilin per liter) at 25 C (EEAI36-91) or 37 C (Rab5C and EEAl constructs) to an

OD600 of 0.6, and induced with 1 mM isopropyl- thio- (3- glactopyranoside (IPTG) for

three hours.

For purification of wild type and mutant proteins , cells were suspended in lysis

buffer (50 mM Tris, pH 8. , 0. 1 M NaCl,. 1 % mercaptoethanol, 0. 1 mM PMSF, 1 mg/mL

lysozyme) and disrupted by sonication. Triton X100 was added to a final concentration

of 0.5% and the cell lysates centrifuged at 35000xg for 40 min. For 6xHis fusion

proteins, clarified supernatants were loaded onto an NiNT A-agarose column (Qiagen).

After washing with ten column volumes of buffer (50 mM Tris, pH 8.0, 500 mM NaCI

10 mM imidazole, . 1 % mercaptoethanol), 6xHis fusion proteins were eluted with a

gradient of 10- 150 mM imidazole. For GST fusions, the supernatants were loaded onto a



glutathione-sepharose column (Amersham Biosciences) equilibrated with 50 mM Tris,

pH 8.0, 0. 1 M NaCl, 0. 1 % 2-mercaptoethanol. After washing with 10 column volumes of

the same buffer, GST fusion proteins were eluted with 10 mM reduced glutathione.

Subsequent ion exchange chromatography using Source Q or Source S (Amersham

Biosciences) followed by gel fitration chromatography over Superdex-75 (Amersham

Biosciences) resulted in preparations that were 
99% pure as judged by SDS-PAGE. To

generate the untagged form of Rab5C constructs, GST fusion proteins at a concentration

of 2-4 mg/mL were incubated with 2 ""g/mL of human a-thrombin (Hematalogic

Technologies) overnight at 4 C in 50 mM Tris, pH 8.0, 2 mM CaCI2, and . 1 %

mercaptoethanol. Following incubation with glutathione-agarose to remove residual

fusion protein, the cleaved Rab5C constructs were further purified by ion exchange and

gel filtration chromatography. Typical yields of purified proteins range from 10 to 100

mg/L of bacterial culture. For Rab GTPases, all buffers are supplemented with 2 mM

MgCI2'

Ligand Binding Experiments EEAl constructs at concentrations of 1-5 ""M in 20

mM Hepes, pH 7. , 100 mM NaCI were titrated with aliquots of soluble head group

analogs. Samples were excited at 290 nm (2 nm bandpass) and emission spectra recorded

from 300-400 nm (1 nm bandpass) using an ISS spectrofluorimeter. The magnitude of

fluorescence quenching ( I) was calculated from I = I - 1 , where I is the integrated

emission spectrum at a given free ligand concentration ((L)) and 10 is the integrated

emission spectrum without ligand. Values for the dissociation constant (Kd) were
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obtained by a non-linear least square fit to a simple two state binding model I = C* (L) /

(Kd + (L)), where C is a constant.

Sedimentation equilbrium. EEAl constructs were dialyzed against 50 mM Tris,

pH 7.5, 100-150 mM NaCI and centrifuged to equilbrium in a Beckman Optima XLI

analytical ultracentrifuge. The absorbance at 230 nm (A230) or 280 nm (A280) was

measured as a function of the radial distance (r) from the axis of rotation. The x-values

of the data were transformed as 
2/2), where ro was taken as the last point in

each data set and was calculated with SEDINTERP (289) using the monomer

molecular mass for each construct. Data were fit to the function A280(r) = Co + 

exp( -ni m * 2)/2), where Co and are constants and ni represents the order of

the ith oligomeric species.

Crystallzation and Structure Determination Crystals were grown at 4 C in

microseeded hanging drops containing 12 mg/ml EEAI1287-1411, 11% PEG 4000, 50

mM Hepes, pH 7.0, 60 mM ammonium acetate, and 1.5 mM Ins(1,3)P2' The crystals are

in the space group P21 21 with unit cell dimensions a = 36.5 A , b = 85. 1 A, and c = 88.

A. Prior to data collection , crystals were briefly transferred to 10% PEG 8000, 10%

MPD, and 10% glycerol and flash frozen in a nitrogen cryostream. The structure was

solved by multiwavelength anomalous diffraction at the Zn2+ edge (Table 4). Data were

collected at the X12C beam line at the Brookhaven National Synchrotron Light Source

using an inverse beam strategy. Throughout data collection, the crystal was maintained

at 100 K. Four Zn2+ sites were identified by Patterson and direct methods (SHELXS)



based on the Bijvoet differences in data collected at the f" maximum. The heavy atom

model was refined against a maximum likelihood target function using SHARP (290).

Initial phases were improved by solvent flpping using Solomon as implemented in CCP4

(291). A aA weighted Fourier summation yielded a readily interpretable map with

continuous density throughout both polypeptide chains and unambiguous density for two

Ins(1,3)P2 molecules. An initial model was constructed using 0 (292) and refined

without NCS restraints against data from 50 - 2.2A using X-plor (250). Structural figures

were generated with Molscript (252), GL Render (L. Esser) and Raster3D (253).

Co-precipitation. GST -Rab518-185 was exchanged at 37 C for 30 minutes with a

25-fold molar excess of GppNHp in 50mM Tris, pH 8.5 containing 5mM EDT A, 100mM

NaCI and 2U of agarose-immobilzed alkaline phosphatase per mg of protein. The

exchange reaction was quenched by addition of 10 mM MgCl2 and excess nucleotide

removed by gel fitration on Superdex-75. 6xHis-EEAl constructs were incubated in a

1:1 molar ratio with GDP-bound or GppNHp-bound GST-Rab518- 185 at a concentration

of 20!-M for 30 minutes at 4 C in buffer A (50mM Tris, pH 8. , 100mM NaCI , 2mM

MgCI , 0. 1 mg/mL BSA, and 0. 1 % Tween 20). 50!-1 of equilbrated glutathione-

sepharose beads (Amersham Biosciences) were added to 100 !-l of the protein mixture

and incubated for Ih. Following centrifugation, the supernatant was collected and the

pellet washed three times with 100 !-l of buffer A. After washing, the beads were

incubated with buffer A containing 10 mM glutathione for 15 minutes and the fractions

analyzed by SDS-PAGE with Coomassie Blue staining.



Surface plasmon resonance. SPR sensograms were collected with a BiacoreX

instrument (Pharmacia Biosensor AB) using a carboxy-methylated (CM5) sensor chip to

which a GST antibody was covalently coupled using reagents and protocols supplied by

the manufacturer. All proteins were dialyzed into flow buffer (10 mM Tris pH 7.5, 150

mM NaCI , 2 mM MgCI2, 0.005% Tween-20) prior to injection. Tandem flow cells were

utilzed, one loaded with the 500 nM GST -Rab5C (sample channel) and the other with an

equivalent molar quantity of GST (reference channel) expressed and purified as described

above for the GST -Rab5 constructs. GST and GST -Rab5C were injected at a flow rate of

l/min whereas subsequent injections were conducted at a flow rate of 20 l/min.

Conversion to the active conformation was achieved by injecting 50 1 of 3 M Rabex-

followed immediately by a 10 l injection of 200 nM GppNHp. Binding and dissociation

were monitored following 20 l injections of increasing concentrations of 6xHis-EEA1.

Following curve alignment, the reference sensogram, which reflects bulk refractive index

changes and/or reversible non-specific binding, was subtracted from the sample

sensogram. The SPR signal at equilbrium (Re ) was extracted from the fit with a simple

1:1 Langmuir binding model and plotted as a function of 6xHis-EEAl concentration.

Dissociation constants (Kd ) were obtained from a fit to the hyperbolic binding function

= Rmax (6xHis EEA1) / (Kd + (6xHis EEA1)), where Rmax corresponds to the SPR

signal at saturation and is treated as an adjustable parameter. Mean values and standard

deviations (a I) were calculated from 2-4 independent measurements. Control

experiments verify that the fitted Kd values are independent of flow rate (5-50 l/min)



and surface coverage (10 fold range), indicating that the equilbrium data are not limited

by mass transfer or rebinding.

Intrinsic tryptophan fluorescence. Rab5C at concentrations of 1 or 20 M in 10

mM Tris pH 7.5, 150 mM NaCl , 2 mM MgCl2 was titrated with 6xHis-EEAI36-91'

6xHis-EEAI36-218' or the W104A mutant of 6xHis-EEAI36-218' Samples were excited

at 290 nm (1 M Rab5C) or 300 nm (20 M Rab5C) with a 2 nm bandpass and emission

spectra recorded from 300-400 nm (1 nm bandpass) using an ISS spectrofluorimeter. The

magnitude of fluorescence quenching (.M) at 340 nm was calculated as .M = I - , where

I and 10 are the emission intensities in the presence and absence of EEA1 , respectively.

Values for the dissociation constant (Kd) and the number of binding sites (n) were

obtained by a non-linear least squares fit to a simple two state binding model AI = AImax

(b - -(b2 - 4 (EEAlh / (n (Rab5C)tHl/ )/2, where b = 1 + (EEA1)J(n (Rab5C)t) + Kd/(n

(Rab5C)t), (EEA1)t and (Rab5Ch are the total concentrations of EEAl and Rab5C

respectively, and Almax corresponds to the emission intensity at saturation.

Concentrations were determined from the absorbance at 280 nm using calculated

extinction coeffcients E280 (M- l cm- l) = #Trp x 5200 + #Tyr x 1200 + #Cys x 120.

Homology modeling. The sequence of the EEAl C2H2 Zn2+ finger was threaded

against a protein structure database using the 3D-PSSM fold recognition server to

identify a suitable structure for homology modeling. The NMR structure of a C2H2 Zn

finger from the yeast transcription factor Adrl (PDB ID paa) was selected for further

homology modeling on the basis of it's low scoring E-value and the absence of gaps in



the alignment. The EEA 1 C H2 Zn2+ finger shares 29% identity with that of Adrl,

which represents the closest homologue of known structure. Non-conserved residues

were substituted with the corresponding residues in EEA1 , which were modeled in the

most frequently observed rotomer conformation compatible with the structure. The

resulting homology model represents a rough , working approximation to the actual

structure , with an overall fold consistent with the common topology of C2H2 Zn

fingers.



Results

The C-terminus of EEAl

A screen of homodimeric EEA 1 constructs reconstituted with a 2 fold excess of

Ins(1,3)P2 yielded crystals for EEA11287-1411, which begins at the IQ motif and extends

through the C-terminus. The structure was solved by multi wavelength anomalous

diffraction at the Zn2+ edge (Table 4). Two polypeptide chains and two molecules of

Ins(1,3)P2 are contained within the asymmetric unit. The high quality of the

experimental electron density map, obtained without symmetry averaging, allowed each

chain to be separately fit and refined, giving rise to two independent observations. The

refined model , which includes two polypeptide chains (residues 1289- 1411), two

molecules of Ins(1,3)P2' four Zn 2+ ions and 45 water molecules, has a R-value of 0.221

and a free R-value of 0.281.

The C-terminal region of EEAl forms a highly organized quaternary assembly

consisting of a parallel coiled-coil that terminates abruptly in a dyad symmetric FYVE

domain homodimer (Figure 17). Two molecules of Ins(I,3)P2 are bound to identical sites

located on a common surface directly opposite the coiled-coil. Flanking each

phosphoinositide binding site, a short 'turret loop ' (residues 1366SVTV1369) and a pair of

tandem lysine residues (1396KK1397) protrude from the extended surface of the FYVE

domain homodimer. The EEAl FYVE domain is comprised of four short (3 strands and a

terminal a helix assembled around two Zn2+ ions, which coordinate the thiol groups of

cysteine residues from the four conserved CxxC motifs. The first ten residues of each
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Figure 17. Overall structure of the homodimeric EEAl C-terminal region
bound to Ins(1,3)P2. The polypeptide chains are colored green (chain A) or blue
(chain B), the head group is shown in yellow (carbon and phosphorus atoms) and
red (oxygen atoms), and the Zn2+ions are depicted as gray spheres. Side view with
semi-transparent molecular surfaces covering the individual polypeptide chains



Data Collectiona
Wavelength (A) Al (1.28322) A2 (1.28356) A3 (1.23985)

Source NSLS X12C NSLS X12C NSLS X12C

Resolution (A) 20- 20- 20-

sym (%)b 4.5

d/eD 24.7 (2. 24.9 (2. 27.7(3.4)
Completeness 86.4 (33.5) 86.8 (40.4) 91.7 (58.

Redundancy

Phasing Power and Figure of Merit
Bijvoet Al Bijvoet A2 Bijvoet A3 Al vs. A3 A2 vs. A3

Aentrc PP 07 (0.79) 67 (0.93) 57 (0.98) 05 (1.49) 08 (1.45)

Centric PP 14 (0. 85) 66 (1.02)

Centric 60 (0.27)

Table 4. EEAl C-terminus: structure determination and refinement

FOM

Refinement
Acentric 66 (0.36)

Resolution

20-2.35 A

RMS Deviations

Bond Length

006

Bond Angle

1.1

R Factor

22.

Free R Factor

28.

Table 4 footnotes

aValues in parentheses represent the highest resolution shell.

sym = 
j IljCh) - d(h) 1 / j Ij(h).

cValues are -c( IFI2 1/2 / -cIFI2 1/2 for data from 20 to 2.2 A.

dR-value for a 5% subset of reflections selected at random and omitted from refinement.



FYVE domain extend around the outer edge of the phosphoinositide binding site as they

link the C-termini of the coiled-coil helices to the FYVE domain core. In both

polypeptide chains , the N-terminallinker region is observed in a similar, well ordered

conformation constrained both by intramolecular interactions with the FYVE domain

core and by extensive intermolecular interactions between polypeptide chains. Residues

1351EDNEV1355 in the linker segment adopt a stable a helical secondary structure such

that the side chain of the second residue in the helix (AspI352) faces the

phosphoinositide binding site.

Competition assays and NMR experiments suggest that the afinity of the EEAl

FYVE domain for the head group of Ptdlns(3)P lies in the micromolar range (284 293).

However, the dissociation constant for Ins(1,3)P2 or other phosphoinositide head groups

has not been measured directly. Consequently, the intrinsic affinity and specificity of the

FYVE domain for the head group of Ptdlns(3)P is not known. In view of the organized

quaternary structure of the EEAl C-terminal region (Figure 18), it is likewise unclear

whether the free energy for simultaneous head group binding to an EEAl homodimer

reflects an additive, cooperative or anti-cooperative mechanism. To address these

questions, we have determined the head group binding properties and oligomeric state of

three C-terminal EEAl constructs that contain different lengths of the coiled-coil region.

The C-terminal region of EEAl contains a single conserved tryptophan at the N-

terminus of the FYVE domain. When titrated with phosphoinositide head groups or

soluble dibutyl Ptdlns(3)P, the intrinsic tryptophan fluorescence of EEAI1278-1411 is

quenched and accompanied by a ",5 nm blue shift in the emission maximum (Figure 19A).



s:t tsjt- t- " ' :1t:t
J.' - J."

,s iI jJt 

. ' ~~~--: - - - _ - - - , - _. .---.--

EJ,-

FYVE
Domain

Required for
Dimerization

and
Rab5 Binding

IQ Motif

Figure 18. Model for multivalent membrane binding by homodimeric EEAl.
Orientation of the EEAl homodimer with respect to an idealized membrane leaflet
deduced from the location and dyad symmetry of the PtdIns(3)P head groups (see
text). The region required for both dimerization and interaction with Rab5 is high-
lighted in magenta. The putative IQ motif is highlighted in green.
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Figure 19. Head group binding properties and oligomeric state of EEAl C-
terminal constructs. (A) Emission spectra of EEA11278- l411 in the absence and

presence of increasing concentration of Ins(1,3)P2' Samples were excited at 290nm
and the emission monitored from 300-400nm. (B) Quenching of the intrinsic trypto-

phan fluorescence as a function of ligand concentration for Ins(1,3)P (black

circles), dibutyl PtdIns(3)P (blue squares) and Ins(I, 5)P3 (red triangles). Solid

lines correspond to the non-linear least squares fit to a simple two state binding
model. (C) Sedimentation equilibrium experiments for EEAI1336- l411 and

EEA11287- 1411 in the absence and presence of ImM Ins(I 3)P2' Solid lines represent

predicted model functions calculated with the expected molecular mass for each
species. (D) Summar of the oligomeric state and Ins(I,3)P2 association constant

(Kd) for three EEAl C-terminal constructs showing that the affinity for head group
and oligomeric state represent independent properties.



Both the decrease in emission intensity and the blue shift exhibit saturation at micromolar

concentrations of ligand (Figure 19B). Control experiments with inorganic phosphate,

inositol or mixtures of phosphate and inositol have no detectable effect on the emission

spectrum at concentrations as high as 1 mM (the highest concentration tested). The

dependence of the intrinsic tryptophan fluorescence on ligand concentration is well

described by a simple two state binding model. The measured Kd of 34 !lM for

Ins(1,3)P2 is roughly 4-8 fold lower than that estimated for either Ins(I,4,5)P3 or the

soluble dibutyl Ptdlns(3)P analogue. The moderately decreased affinity for soluble

PtdIns(3)P likely reflects the reduction in charge on the I-phosphate incurred by covalent

linkage to the diacyl glycerol moiety. Similar results are obtained for EEAI1336- l4l1-

which lacks most of the heptad repeat region. The characteristics of head group binding

contrast with the considerably higher affinity (roughly 50 nM Kd) and specificity

observed for the association of EEAl with liposomes containing Ptdlns(3)P

(224 225,284 294).

The oligomeric state of C-terminal EEAl constructs was established by

sedimentation equilbrium experiments in the presence and absence of 1 mM Ins(1,3)P2'

At protein concentrations similar to those used for the fluorescence experiments,

EEAI1336- l411 sediments as a monomer whereas EEAll287- l411 and EEAI1278- l411

sediment as dimers (Figure 19C). Addition of 1 mM Ins(1,3)P2 eliminates a small

contribution from higher order aggregation but otherwise has no apparent effect on the

oligomeric state. Moreover, the binding data show no indication of cooperativity and are
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independent of oligomeric state (Figure 19D). These results demonstrate that the

PtdIns(3)P head group binds to independent sites on the EEAl homodimer, indicative of

an additive thermodynamic mechanism.

Given the modest affinity and specificity for soluble phosphoinositides, it is clear

that the interaction with a single head group can not account for the Ptdlns(3)P dependent

targeting of EEAl to early endosomes (226,283). Furthermore, non-specific membrane

interactions involving the turret loop and tandem lysine residues cannot explain the

requirement for a significant portion of the coiled-coil region (185 245). EEAl

localization has previously been attributed to dual interactions with Rab5 and Ptdlns(3)P

(162 245). However, a double mutant defective in Rab5 binding to the C-terminal region

exhibits wild type localization to early endosomes (269). Moreover, the requirement for

the coiled-coil region can be bypassed by fusing two EEAl FYVE domains in tandem

(294). Likewise, the Hrs FYVE domain exhibits a cytoplasmic distribution in cultured

cells (199 294) but localizes to endosomes when fused to the coiled region of EEAl or as

a tandem fusion with a second Hrs FYVE domain (182 294). These observations

strongly suggest that FYVE domains are unable to target endosomes as isolated

monomers.

Given additive free energies , the Kd for bivalent binding to a homodimer wil 

as the square of the Kd for monovalent binding to an isolated monomer. Using the

measured Kd of 130 M for dibutyl PtdIns(3)P, the additive mechanism predicts a Kd of

17 nM for bivalent PtdIns(3)P binding, which agrees remarkably well with the observed

value of 50 nM (182). The additive mechanism further predicts that the specificity for



Ptdlns(3)P vs. Ptdlns( 4,5)P2 wil be amplified from the 4-8 fold level observed for

soluble head group analogs to 16-64 fold for bivalent binding in the context of a lipid

bilayer. Lipid binding assays suggest that the Kd for EEA 1 binding to Ptdlns( 4 5)P2 in

membranes is at least 20 fold weaker than the Kd for Ptdlns(3)P (182 224 225). Thus, the

simplest thermodynamic model for bivalent Ptdlns(3)P binding quantitatively accounts

for the high affinity of the EEAl FYVE domain for membranes containing Ptdlns(3)P

and also accounts for much of the increase in specificity.

The N-terminus of EEAl

The active forms of Rab5A, Rab5B , and Rab22 have been shown to interact

directly with EEAll-209 (162,285 288). This region of EEAl encompasses a hydrophilc

sequence of 35 residues, the C2H2 Zn2+ finger, and two consecutive heptad repeats. As

shown in Figure 20A, 6xHis EEAll-2l8 co-precipitates with GST -Rab5C loaded with the

non-hydrolyzeable GTP analog, GppNHp, but not does not co-precipitate with the GDP-

bound form or in the presence of the Zn2+ chelating agent TPEN. These results are

consistent with two hybrid experiments in which mutation of a cysteine residue involved

in Zn2+ coordination disrupts the interaction with constitutively active Rab5A and Rab5B

mutants (162 288). Although these observations demonstrate a requirement for an intact

H2 Zn2+ finger, it is not clear whether this reflects a direct interaction between the

H2 Zn2+ finger and Rab5 or whether the C2H2 Zn2+ finger plays an indirect structural
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Figure 20. Nucleotide and Zn2+ dependent binding of Rab5C to the N-
terminus of EEAl. (A) Co-precipitation of 6xHis EEAll-2l8 with GDP-bound
GST-Rab5C or GppNHp-bound GST-Rab5C in the absence and presence of TPEN.
20 JlM 6xHis EEAll-2l8 was incubated with 20 JlM GST -Rab5C loaded with GDP
or GppNHp in the absence and presence of 5 mM TPEN. S, supernatant following
co-precipitation. P, glutathione elution of the pellet following co-precipitation. (B)
SPR sensograms following injection of 20 JlI of 10 Jl 6xHis EEAll-2l8 at a flow
rate of 20 Jll/min into a dual channel flow cell in which anti-GST covalently coupled
to a CM5 sensor chip was loaded with GST-Rab5C18- l85 (sample channel) or GST
(reference channel). (C) SPR sensograms following injection of increasing concen-
trations of 6xHis EEAl1-2l8 under the same conditions as in Figure 20B. Sample
sensograms were corrected for bulk changes by subtraction of the reference
sensogram. (D) Concentration dependence of the equilbrium SPR signal (Req) for
6xHis EEAll-2l8 binding to GST-Rab5C18- l85 loaded with GDP or GppNHp.



L -

c:==: 

role by supporting interactions with flanking regions as is the case for the double Zn

finger of the Rab3A effector Rabphilin-3A (90).

As shown in Figure 20B-D, the interaction of GST-Rab5C-GppNHp with the N-

terminus of EEAl can also be detected and quantitatively analyzed by surface plasmon

resonance (SPR) in a BIAcore instrument using a monoclonal GST antibody coupled to a

CM5 sensor chip. When injected at concentrations in the low micromolar range, 6xHis

EEAll-2l8 exhibits reversible binding to the GppNHp bound form of GST -Rab5l8- l85 as

judged by the amplitude of the SPR signal compared with the GST reference channel

(Figure 20B). The signal in the reference channel rises and decays within the response

time of the instrument, scales linearly with the concentration of 6xHis EEAll-2l8, and

therefore represents either a bulk refractive index change or weak, reversible non-specific

binding indistinguishable from a bulk refractive index change. Under the conditions of

these experiments, the association of N -terminal EEA 1 constructs with GST - Rab5C

approaches equilbrium on the time scale of the injection (Figure 20C). The quantity

bound at equilbrium (R ) saturates at low micromolar concentrations of 6xHis EEAll-

218 (Figure 20D). The data are well fit by a simple Langmuir binding isotherm, yielding

a dissociation constant (Kd) of 3.3 M. In contrast, GST -Rab5l8- l85 loaded with GDP

shows no detectable binding to 6xHis EEAll-218, as expected for a bona fide GTPase-

effector interaction. An equivalent afinity (Kd= 2. M) is observed for the binding of

6xHis EEA136-2l8 to full length GST -Rab5-GppNHp, which includes the hypervariable



N- and C-terminal extensions, indicating that the interaction determinants reside within

the GTPase domain.

To map the minimal interaction site at the N-terminus of EEAl and determine

whether the C2H2 Zn2+ finger is sufficient for Rab5 binding, SPR experiments were used

to quantitatively analyze the binding of GST-Rab518- l85 loaded with GppNHp to a panel

of 6xHis EEAl truncation constructs (Figure 21A). Elimination of the first 35 residues,

corresponding to the hydrophilc N-terminus, has no significant effect on the interaction.

Likewise, C-terminal truncations eliminating part or all of the heptad repeats show

relatively small differences in affinity, which likely reflect systematic variations in the

physical properties of the constructs. Indeed, 6xHis EEAI36-9l, which lacks the N-

terminal hydrophilc region and both heptad repeats , binds in a nucleotide dependent

manner to GST -Rab5l8- l85 with an affinity comparable to that of 6xHis EEAll-2l8

(compare Figure 21B and C with Figure 20C and D). Consistent with this observation,

EEAI9l-2l8, which lacks the N-terminal hydrophilc region and C2H2 Zn2+ finger, shows

no detectable binding to GppNHp-bound GST -Rab5l8- l85 at concentrations up to 150

!-M (the highest concentration tested). A shorter construct corresponding to the minimal

H2 Zn2+ finger defined by homology (EEAI36-74) expressed poorly in bacteria and

could not be fully purified. Although not suitable for quantitative analysis by SPR, this

construct co-precipitates with GST -Rab5l8- l85 loaded with GppNHp but not GDP and,

by tliis measure, does not differ significantly from EEA136-9l (data not shown). I
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therefore conclude that the C2H2 Zn2+ finger is both necessary and sufficient for the

interaction of Rab5C with the N-terminus of EEA1.

Full length EEAl contains over 1200 residues of heptad repeat and forms a

parallel coiled-coil homodimer in cells (295). To establish the oligomeric state of N-

terminal EEAl constructs, EEAll-9l, EEAI36- l26, and EEA136-2l8 were centrifuged to

equilbrium in an analytical ultracentrifuge. Whereas EEAll-9l sediments as a uniform

monomer at a relatively high concentration of 20 I-M, EEA136- l26 and EEA136-2l8

sediment as uniform dimers at a lower concentration of 1 I-M (Figure 22A). Thus, the

heptad repeat proximal to the C2H2 Zn2+ finger provides sufficient driving force for

stable homodimerization but does not contribute either directly or indirectly to the

affinity for Rab5C.

Rab5C contains two tryptophan residues (Trp74 and Trp114) whereas the N-

terminus of EEAl contains a single tryptophan residue (Trp104). When titrated with

6xHis EEAI36-9l, which lacks tryptophan residues, the intrinsic tryptophan fluorescence

of untagged GppNHp-bound Rab5l8- l85 undergoes significant quenching accompanied

by a small shift in the emission maximum (Figure 22B). Both effects saturate at low

micromolar concentrations of 6xHis EEAI36-9l, indicative of a binding interaction. As

shown in Figure 22C , the change in intrinsic tryptophan fluorescence is well described by

a simple hyperbolic binding model, which yields a of 1.1 I-M, in good agreement with

the afnity of 6x His EEA136-9l for GppNHp-bound GST -Rab5l8- l85 measured by SPR.
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lines represent predicted model functions corresponding to uniform oligomeric
states. (B) Intrinsic tryptophan emission spectra for 20 J.M Rab5C18- l85 in the pres-
ence of increasing concentrations of EEAI36-9l. Samples were excited at 300 nm
and the emission detected at 340 nm. (C) Quenching of the intrinsic tryptophan flu-
orescence of IJ. Rab5C18- l85 as a function of EEA136-9l concentration. Samples
were excited at 300 nm and the emission detected at 340 nm. (D) Intrinsic trypto-
phan fluorescence for titration of 20J. Rab5C18- l85 with EEA136-9l or the W104A
mutant of EEA136-2l8. Samples were excited at 300 nm and the emission detected
at 340 nm.



Consistent with these observations, the intrinsic tryptophan fluorescence of untagged

Rab5-GDP is not pertrbed by addition of 6xHis EEAI36-9l'

To determine whether homodimerization infuences the stoichiometry of Rab5C

binding to the N-terminus of EEA1 , titration experiments employing intrinsic tryptophan

fluorescence to monitor binding were conducted under conditions where the

concentration of the fixed component (GppNHp-bound Rab5l8- l85) was roughly 7 fold

greater than the measured Kd' The resulting data were analyzed with a titration binding

model (see Experimental Procedures) that relates the change in intrinsic tryptophan

fluorescence to the binding stoichiometry (n), , and the maximum change in intrinsic

tryptophan fluorescence at binding saturation (L\Fmax

). 

Because cannot be accurately

determined under titration conditions, it was fixed at the value obtained from the

experiment in Figure 22C. Titration with 6xHis EEA136-9l yields a stoichiometry of

, consistent with 1:1 binding. Titration with 6xHis EEA136-2l8 is complicated by the

presence of a single tryptophan residue in the longer EEAl construct. Because the

magnitude of the change in GppNHp-bound Rab5l8- l85 intrinsic tryptophan fluorescence

is considerably larger than the intrinsic trptophan fluorescence contributed by EEAI36-

218, the observed signal decreases monotonically until the majority of GppNHp-bound

Rab5l8- l85 is bound by EEAI36-2l8, at which point the signal increases monotonically

reflecting the contribution from excess EEA136-2l8 (data not shown). However, titration

with the W104A mutant of EEAI36-2l8, which binds with an affinity comparable to the

wild type protein in the SPR experiment, yields a stoichiometry of 1.1, consistent with



two molecules of GppNHp-bound Rab5C binding to identical independent sites at the N-

terminus of homodimeric EEA1.

To faciltate further characterization of the structural requirements underlying the

interaction of Rab5C with the N-terminus of EEA1 , a working homology model for the

EEA 1 C2H2 Zn2+ finger was constructed from the NMR structure of a C2H2 Zn2+ finger

from the Adrl transcription factor (296). The Adrl structure was identified by threading

against a structural database using the 3D-PSSM fold recognition server (297) and was

selected from the lowest E-value structures on the basis of the sequence identity (29%)

and the absence of gaps in the alignment. Non-identical residues in the Adrl C2H2 Zn

finger were replaced with the corresponding residues in EEA1 , which were modeled in

the most common rotomer conformation. Although the resulting homology model does

not represent an accurate representation of the actual structure, it is likely that the overall

topology and approximate location of residues are preserved. The latter assertion is

supported by extensive structural studies of weakly homologous C2H2 Zn2+ fingers

which share a common 
(3(3a fold.

The C2H2 Zn2+ fingers of EEAl and Rabenosyn-5 conserve a number of residues

in addition to those required for Zn2+ coordination or stabilty (Figure 23A). The

majority of these residues are partially exposed in the homology model and cluster on a

common surface , suggestive of a putative Rab5 interaction epitope (Figure 23B). To test

this hypothesis, seven residues (Glu39, Phe41 , Ile42, Pr04, Met47 , Tyr60, and Glu61)

were substituted with alanine and the mutant proteins characterized with respect to
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hEEA1 M- (26) --NTVDVNNESSSEGFICPQCMSLGSADELFKBYEA VBDAGNDSGHGG
cEEA1 M- (33) --QSQKSENDQEIEGFLCPMCMELGGPDELTVBEKEBSDFQTSANRNhRbnsyn MASLDDPGEVREGFLCPLCLKDLQSFYQLHSBYEEEBSGEDRDVKGQ
cRbnsyn MIGATGSGGTGGHNDVVRQGFICPFCMDFGEYERLICBVNDBPEEDSSDLAGscVac Ip MDLENVSCPICLRKFDNLQALNAHLDVEBGFNDNEDSLG
scAdr 1 M- ( 118) -LKRHYRSHTNEKPYPCGLCNRCFTRRDLLIRBQKIBSGNLGETISHConsensus cp 

Figure 23. Homology model for the C2H2 Zn2+ finger of EEAl. (A) Alignment
of the C2H2 Zn2+ fingers of EEA1, Rabenosyn-5, Vac1p, and Adrl. The secondary
structure for Adrl and conserved residues corresponding to the Iconsensus ' motif for
classic C2H2 Zn2+ fingers are shown above and below the alignment, respectively.
Residues are color coded according to the conservation of physiochemical similarty
as defined by the following amino acid classes: small (GA), acidic (DE), basic
(KR), polar (STNQ), Cj3-branched non-polar (VI), non-polar (LM), aromatic
(FYW), and unique (P, C, or H). (B) Structural homology model for the C2H2 Zn
finger of EEAl with conservation of physiochemical similarty mapped to the sur-
face. The homology model was derived from the NM structure of the Adrl C2H2

2+ finger (PDB il code IPAA) by substituting EEAl side chains in the most
common rotomer conformation. Physio-chemical similarty is defined as in A.



Rab5C binding and structural integrity. All seven mutants expressed in soluble form at

levels comparable to the wild type protein. Substitution of Glu61 had little effect on the

affnity for GppNHp-bound Rab5C18- l85' In contrast, alanine mutants involving Glu39

or any of the hydrophobic residues exhibited severe defects, with 10 fold or greater

reduction in the affinity for GppNHp-bound Rab5C18- l85 (Figure 24 and Table 5).

Consistent with these observations, the binding of GppNHp-bound Rab5C18- l85 to N-

terminal EEAl constructs was undetectable by isothermal titration microcalorimetry

(data not shown), suggesting that the interaction is entropically driven, presumably by

burying exposed hydrophobic surfaces. The results of the mutational analysis suggest

that Rab5C should be capable of binding to the C2H2 Zn2+ finger of Rabenosyn-5 but not

to the C2H2 Zn2+ finger of Vac1p, due to non-conservative substitutions involving

critical residues (see Figure 23A). To test this hypothesis, the C2H2 Zn2+ fingers of

Rabenosyn-5 and V ac1 p were expressed as GST fusions and the interaction with 6xHis

Rab5C18-l85 determined by SPR (Figure 25). Whereas the C2H2 Zn2+ finger of

Rabenosyn-5 binds to Rab5C18- l85 with a Kd of 0. 6 I-M, the H2 Zn2+ finger of Vac 1 

exhibits no detectable binding at concentrations of Rab5C18- l85 as high as 150 I-M (the

highest tested).
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Figure 24. Determinants of Rab5C binding to the C2H2 Zn2+ finger of EEAl.
(A) Effects of alanine substitutions on the affinity of GST-Rab5C18- l85 for EEA136-
218 as assessed by SPR under the same conditions as in Figure 20B. (B) Relative
affinity, Kd (mutant) / Kd (wild type), mapped to the surface of the structural homol-
ogy model for the C2H2 Zn2+ finger ofEEA1.
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Table 5. Dissociation constants for GppNHp-bound GST Rab5C 185 binding to
mutants in the C2H2 Zn2+ finger of6xHis EEA136-218Protein Kd ( M) Kd (mutant) / Kd (wt)
Wild Type (wt) 1.6 :t.3 E39A 22.4 :r7.F41A ;:200* ;:100142A ;:200* ;:100P44A 66.5 :r12.M47A 67. :r16.Y60A 50.3 :r12.E61A 5.4 :t. 3.3
* Conservative estimate reflecting the absence of a detectable SPR signal above that of
the reference channel at a concentration of 200 M 6xHis EEAI36-2l8'



...

100

Q. 

200

Figure 25. Rab5C binds to the C2H2 Zn2+ finger of Rabenosyn-5 but not
Vaclp. The interaction of GppNHp-bound Rab5C18- l85 with GST fusions of the
Rabenosyn-5 and Vac 1 p C2H2 Zn2+ fingers was assessed by SPR under the same
conditions as in Figure 20B.
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Discussion

The C-terminus of EEAl

A striking feature of the EEAl homodimer is the location of dyad symmetric

phosphoinositide binding sites on a common surface formed as the direct consequence of

the unique domain organization and quaternary structure of the C-terminal region. The

resulting surface is ideally configured for simultaneous binding of two Ptdlns(3)P head

groups, provided that the dyad axis of the FYVE domain homodimer is oriented normal

to the membrane surface as depicted for an idealized membrane leafet in Figure 18. Any

other orientation would favor interactions with one FYVE domain at the expense of the

other, necessitating an energeticalJy unfavorable deformation of the membrane to sustain

simultaneous head group binding. The depth of penetration into the bilayer can be

established by translation parallel to the membrane normal until the I-phosphate groups

of the dyad related head groups in the EEAl homodimer are positioned at the level of the

corresponding I-phosphate groups in the idealized membrane leaflet. The resulting

model predicts that residues l367VT1368 at the tip of the turret loop would penetrate into

the interfacial region of the lipid bilayer while the remaining residues in the turret loop

(Ser1366 and Va11369) would reside within the head group region. This prediction,

deduced from the quaternary structure of the liganded EEA 1 homodimer and the

assumption of simultaneous Ptdlns(3)P binding, agrees well with the observation that

resonances for residues 1365FSVTV1369 shift and broaden in the presence of dodecyl

phosphatidyl choline micelles (293,298) and supports the hypothesis that the exposed

non-polar residues at the tip of the turret loop insert into interfacial region (24).



Although the energetic contribution from non-specific membrane interactions

with the turret loop and/or tandem lysine residues is not known, it is expected to be weak

given the small number of rysidues in direct contact with the membrane (24). This view

is supported by the non-specific association of the unliganded EEAl FYVE domain with

dodecyl phosphatidyl choline micelles, which is not saturated at a high detergent

concentration of 600 mM (293). Furthermore, the FYVE domain construct used for these

studies includes twenty residues from the coiled-coil region and was reported to form

dimers at the concentrations of the NMR experiments. These observations are consistent

with a monomer Kd for non-specific binding to dodecyl phosphatidyl choline micelles in

the mid to high mM range, which is several orders of magnitude weaker than the

dissociation constant for the specific interaction with soluble dibutyl Ptdlns(3)P. If the

energetic contribution from non-specific binding was comparable to the specific

interaction with the head group, then EEAl dimers should bind non-specifically to

membranes with nanomolar affinity and have femtomolar affinity for membranes

containing Ptdlns(3)P. Thus, both experimental observations and thermodynamic

considerations support a bivalent mechanism of Ptdlns(3)P recognition as the primary

driving force for selective amplification of the weak affinity of the EEAl FYVE domain

for the head group of Ptdlns(3)P. Moreover, the critical role of the coiled-coil region for

stable dimerization explains the requirement of the region N-terminal to the FYVE

domain for endosomallocalization.

An unresolved question concerns whether the apparently rigid organization of the

EEAl homodimer is maintained in the absence of head group. NOE data for an isolated



EEA 1 FYVE domain provide evidence that residues in the linker segment undergo a

localized conformational change upon head group binding (298). Because the

conformation and mobilty of the linker segment in the crystal structure differs

substantially from both the liganded and unliganded NMR structures, it is possible that a

structural change involving the linker segment does not occur in the context of the intact

EEAl homodimer. We note, however, that crystals of EEAI1287- l411 are not obtained in

the absence of Ins(I 3)P2' Both head group binding sites are situated adjacent to a

solvent channel in the crystals and neither Ins(1,3)P2 molecule participates in

intermolecular crystal contacts, consistent with a difference in tertiary and/or quaternary

structure. Moreover, the conserved aspartic acid residue of the WxxD motif at the N-

terminus of the linker region directly contacts the head group, suggesting a plausible

linkage between head group binding and the conformation of the linker region. As noted

above, the FYVE domain dimer interface contributes weakly, if at all, to the stabilty of

the EEAl homodimer. In the absence of head group, the engagement of the linker region

with the FYVE domain core could be weakened, perhaps relaxing the rigid quaternary

structure of the liganded FYVE domain dimer. Definitive resolution of this question wil

require structural data on the unliganded EEAl homodimer.

Based on the quaternary organization of the liganded EEA 1 homodimer and

taking into account the available physical , biochemical and cell biological data, we

propose the following kinetic model for the sequence of events resulting in localization of

EEA 1 to early endosomes. The unliganded form of the EEA 1 homodimer engages

intracellular membranes through transient, non-specific interactions. This mode of non-



selective membrane sampling reflects a high off-rate, which limits the extent of lateral

diffusion and strongly favors a cytoplasmic distribution. The presence of Ptdlns(3)P is

detected by interactions with the invariant residues of the R(R/K)HHCR and RVC motifs,

thereby increasing the mean residence time at endosome membranes. The interactions

between the head group and the conserved asparic acid residue of the WxxD motif may

trigger a conformational change that fully engages the FYVE domain core with respect to

the linker region. Lateral diffusion rapidly faciltates a similar sequence of events for the

second FYVE domain. Although the affinity fora single Ptdlns(3)P head group is

relatively weak, the multivalent quaternary structure of EEAl faciltates stable

association with endosome membranes. Finally, the weak binding of Rab5 to the C-

terminal region may furter restrict localization to Rab5 positive endosome membranes.

The N-terminus of EEAl

The crystal structure of a constitutively active mutant of Rab3A bound to the

minimal Rab3A binding domain (RBD) of Rabphiln-3A provides the only available

structural data on the interactions of Rab GTPases with effectors (90). The RBD of

Rabphiln-3A consists of an N-terminal helix, a double Zn2+ finger with a fold similar to

that of a FYVE domain, and a C-terminal loop/helix. Although the double Zn2+ finger

does not contact Rab3A directly, it serves an indirect structural role by supporting

interactions with the N-terminal helix and C-terminalloop/helix. The interaction of Rab5

with the C-terminus of EEAl requires an intact FYVE domain and is disrupted by point

mutants in the proximal coiled-coil region (185,269). Although the interaction with the
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terminus has not been quantitatively analyzed, Rab5 does not co-precipitate with either

the proximal coiled-coil or the FYVE domain alone, suggesting that the binding site

encompasses both regions (269). Using purified reagents and quantitative measures of

binding, I have shown that C2H2 Zn2+ finger (residues 36-74) is both necessary and

sufficient for the interaction of Rab5C with the N-terminus of EEAl. Thus, the function

of the C2H2 Zn2+ finger at the N-terminus of EEAl differs fundamentally from the

indirect structural role of the double H2 Zn2+ finger of Rabphiln-3A. The mode of

interaction also differs from that at the C-terminus of EEA1 , which requires both the

FYVE domain and the proximal coiled-coil.

Two variations are common in classic C2H2 Zn2+ fingers, the 'consensus ' motif

(C- X5- X3- H) and the 'swapped' motif (C-

X3- H) (299 300). These motifs differ in the location of the central phenylalanine

residue, which in either case packs in the small hydrophobic core with the conserved

leucine and one of the conserved histidine residues. Both motifs adopt a similar 
(3(3a fold

stabilzed by a tetrahedral Zn2+ ion, which forms a tetrahedral coordination complex with

the thiol groups of the conserved cysteine residues contributed by adjacent strands of the

(3 hairpin and the imidazole side chains of the conserved histidine residues at the C-

terminus of the a helix. The C2H2 Zn2+ finger of EEAl closely resembles the consensus

motif with the exception that the phenylalanine residue following the conserved cysteine

residues is replaced by a leucine residue. The corresponding substitution has been

studied in the context of the C2H2 Zn2+ finger of ZFY , where it has little effect on the
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structure or affinity for Zn , although it does increase the overall dynamic mobilty

(300). Whether the latter effect would be compensated by other substitutions in EEAl 

otherwise contribute to the interaction with Rab5 is not clear. Although it is possible that

the observed defects in some mutants reflect an indirect effect on the folding and/or

structure of the C2H2 Zn2+ finger, alanine residues occur naturally in C2H2 Zn2+ fingers

at each of the positions examined in this study. Consistent with this observation , C2

2+ fingers have been shown to be tolerant of alanine substitutions at non-consensus

positions (301). Furthermore, each mutated residue occupies an exposed or partially

exposed position in the structural homology model. Finally, the mutants with severe

defects involve residues that cluster on a common surface. Therefore, I favor the

interpretation that the defects arise from altered interactions with Rab5.

Rab5C contains two tryptophan residues, one located in the (33 strand at the

interface between the switch I and II regions (Trp74) and the other located in the a3 helix

adjacent to the switch II region (TrpI14). In the crystal structure of GppNHp-bound

Rab5C, Trp74 is partially exposed whereas Trp114 is buried (237). Although it is

possible that the observed changes in intrinsic tryptophan fluorescence arise indirectly

from structural rearrangements in the vicinity of one or both tryptophan residues, a more

straightforward explanation is that the partially exposed Trp74 is located in or adjacent to

the epitope for interaction with the C2H2 Zn2+ finger of EEA1. Trp74 is flanked by two

other partially exposed hydrophobic residues, Phe58 in the switch 1/(32 region and Tyr90

in the switch II region. This triad of invariant hydrophobic residues constitutes a

prominent, exposed hydrophobic patch in the active form of Rab GTPases with known
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structure and lies at the core of the interface between the switch regions of Rab3A and

Raphilin3A (90). I have previously shown, in chapter that the conformation of the

invariant hydrophobic triad varies between Rab GTPases and thereby contributes to the

specificity of Rab-effector interactions (237). Moreover, the hydrophobic triad is located

adjacent to variable loop regions also implicated in Rab-effector specificity (90). 

therefore propose that the invariant hydrophobic trad in Rab5 lies at the core of a largely

non-polar interface with the cluster of conserved hydrophobic residues in the C2H2 Zn

finger of EEA1. This hypothesis is generally consistent with known modes of GTPase-

effector interaction and would explain the apparent lack of a significant enthalpic

component to the free energy of binding inferred from the inabilty to detect the

interaction by isothermal titration microcalorimetry. A more detailed understanding of

the structural basis underlying the interaction of Rab5 with the N-terminus of EEAl wil

require the structure of the C2H2 Zn2+ finger in complex with Rab5.

EEAl dependent endosome tethering

In vitro fusion assays as well as studies in cultured cells implicate both EEAl and

Rab5 in the tethering of early endosomes (154, 162, 163 226 227 269 302). Tethering is

thought to represent a general intermediate preceding the docking, priming and fusion of

vesicles with target membranes. EEA 1 has been proposed to tether early

endosomes/endocytic vesicles by binding Ptdlns(3)P at its C-terminus and Rab5 at its N-

terminus (163). The organized quaternary structure of EEAl strongly supports this

hypothesis and serves as the basis for a plausible structural model for the tethered
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intermediate (Figure 26). Bivalent binding is expected to significantly enhance the

..1

=-1

affinity for membranes containing Ptdlns(3)P; however, the isolated FYVE domain of

EEAl does not form stable dimers. These observations explain the strict requirement of

the proximal heptad repeat for endosome targeting and why it can be bypassed by fusing

two FYVE domains in tandem (294).

Although the heptad repeat at the N-terminus also provides the driving force for

stable dimerization, it neither enhances nor interferes with Rab5 binding. Moreover

titration experiments indicate that the N -terminus of the EEA 1 homodimer supports

simultaneous, independent binding of two Rab5 molecules. Whether one or two

molecules of Rab5 bind in a cellular context would depend on the effective concentration

of active Rab5 on the membranes of endosomes or endocytic vesicles. It seems unlikely

that the low micromolar Kd for Rab5 binding to the N-terminus of EEAl would be

sufficient for stable endosome tethering. However, the combined action of multiple

EEAl molecules, each with the potential for bivalent Rab5 binding, could generate a

stably tethered intermediate with considerable dynamic flexibilty, given the glycine rich

hydrophilc sequence following the C2H2 Zn2+ finger, several predicted hinge regions in

the heptad repeat near the N-terminus of EEA1 , and the glycine/proline rich hydrophilc

sequence connecting the GTPase domain of Rab5 to the dual prenylation motif at the C-

terminus.

With the exception of the N-terminal C2H2 Zn2+ finger and C-terminal FYVE

domain, a strong heptad repeat is present throughout the sequence of EEA 1. Several

proline-glycine motifs (residues l26PDG128, 2l8PG2l9, and 279Gp280) break the heptad
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repeat in the vicinity of the N-terminal Rab5 binding site. However, similar flexible kink

regions are absent from the remainder of the protein. Thus, residues 281- 1346 of EEAl

are predicted to form a continuous parallel coiled-coil. Given the mode of multivalent

membrane binding depicted in Figure 18 , the long axis of the coiled-coil would 

oriented normal to the endosome surface such that the N-terminal Rab5 binding site

would be located ,.160- 180 nm from the endosome surface. Early endosomes coated

with such EEAl homodimers would be ideally configured to capture and tether Rab5

positive endocytic vesicles or other early endosomes. The rigid quaternary structure of

the EEAl C-terminal region ensures that the coiled-coil extends directly into the

cytoplasm, thereby preventing the N-terminus from folding back and binding Rab5

proteins on same endosome.

EEA 1 possesses two distinct Rab5 binding sites, one corresponding to the C2

2+ finger and the other overlapping the C-terminal FYVE domain and proximal coiled-

coil region. We estimate that the solution affinity of unprenylated Rab5 for C-terminal

constructs of EEAl is at least an order of magnitude weaker than that observed for the

H2 Zn2+ finger. Though weaker, the C-terminal interaction may nevertheless

contribute significantly in vivo as a consequence the restricted dimensionality resulting

from co-localization on endosome membranes. Indeed, point mutants that disrupt Rab5

binding to the C-terminal site exhibit a dominant negative phenotype when expressed at

high levels in cultured cells (269). Recently, the interactions of calmodulin and Rab5

with the C-terminal region of EEAl have been reported to antagonize Ptdlns(3)P binding

(303). One role of these interactions may be to disrupt the quaternary structure of the C-
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terminal region , thereby effecting release from the tethered state in conjunction with

membrane fusion.

Like EEA1 , Rabenosyn-5 also possesses two apparently independent Rab5

binding sites corresponding to the C2H2 Zn2+ finger (present study) and a second site

within the C-terminal third of the protein (155). Although the C2 2+ fingers of

EEA 1 and Rabenosyn-5 bind Rab5 with an affinity and nucleotide specificity

characteristic of bona fide GTPase effectors, the functional significance of these

interactions has not been tested in vivo. , as hypothesized, the N-terminal interaction

with Rab5 plays a critical role in the tethering and/or fusion of early endosomes, then

cells expressing full length EEAl constructs carrying the F41A or 142A mutations in the

H2 Zn2+ finger should exhibit a strong dominant negative phenotype. I anticipate that

these mutants and the analogous point mutations in Rabenosyn-5 wil provide useful

reagents for exploring the in vivo functional role of the homologous C2H2 Zn2+ fingers in

the context of the full length proteins.
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CHAPTER IV

DETERMINANTS OF RAB-GEF RECOGNITION AND THE

STRUCTURE AND SPECIFICITY OF THE RABEX-5 HELICAL

BUNDLE-VPS9 CATALYTIC TANDEM

Summary

Rab GTPases function as essential regulators of vesicle transport between sub-

cellular compartments of eukaryotic cells. Mss4, an evolutionarily conserved Rab

accessory factor, faciltates nucleotide release and binds tightly to the nucleotide free

form of exocytic but not endocytic Rab GTPases. A structure based mutational analysis

of residues that are conserved only in exocytic Rab GTPases reveals three residues that

are critical determinants of the broad specificity recognition of exocytic Rab GTPases by

Mss4. One of these residues is located at the N-terminus of the switch I region near the

nucleotide binding site whereas the other two flank an exposed hydrophobic triad

previously implicated in effector recognition. The spatial disposition of these residues

with respect to the structure of Rab3A correlates with the dimensions of the elongated

Rab interaction epitope in Mss4 and supports a mode of interaction similar to that of

other exchange factor/GTPase complexes.

Activation of the Rab5 GTPase, an essential regulator of endocytic vesicular

trafficking, is mediated by modular exchange factors that contain a Vps9 homology
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domain. Here we report the crystal structure, exchange determinants, and family-wide

Rab specificity of the catalytically active core of the Rab5 exchange factor Rabex-5. The

structure reveals a tandem architecture in which the Vps9 domain is stabilzed by an

indispensable helical bundle. An invariant aspartic acid residue in an ordered loop of the

Vps9 domain adjoins a shallow groove lined with highly conserved residues from a pair

of adjacent helices, the arrangement of which resembles a critical helical substructure in

the Sec7 domain of Arf exchange factors. Mutation of conserved residues within the

putative Rab5 binding surface, but not adjacent regions, severely impairs exchange

activity. Finally, a quantitative Rab family-wide interaction analysis indicates that the

Rabex-5 catalytic tandem has highly selective exchange activity for Rab GTPases of the

Rab5 subfamily.

This chapter contains work previously published in Zhu et al. (304) and Delprato

et al. (submitted). Consensus determinants for Rab GEF interactions were defined using

data generated by Zhongyuan Zhu (304) and previously published reports (114- 117).

Some Rabex-5 constructs and the diffraction quality crystals were generated by Anna

Delprato. Data collection, refinement and analysis of the Rabex-5 HB-Vps9 structure

were conducted by Anna Delprato, David Lambright and myself. Rabex-5 point

mutations were generated and analyzed by Anna Delprato and myself. Rab family wide

analysis of Rabex-5 exchange specificity was conducted by Anna Delprato using a

collection of Rab proteins generated by Anna Delprato, Sudharshan Eathiraj, Xiaojing

Pan, Chris Ritacco and myself.
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Introduction

As critical regulators of intracellular membrane trafficking, Rab proteins comprise

the largest GTPase family with at least 38 functionally distinct proteins and an additional

twenty isoforms encoded in the human genome (4 59,60). Like other GTPases , Rab

proteins cycle between active (GTP bound) and inactive (GDP bound) conformations.

Accessory factors, in some cases coupled to signaling networks, regulate the GTPase

cycle by modulating membrane association , nucleotide binding, and GTP hydrolysis.

Upon targeting to donor membranes, Rab GTPases are activated by GEFs. In the active

conformation, Rab GTPases interact with diverse effector proteins to faciltate vesicle

budding from donor membranes, cargo sorting, and motor-dependant transport as well as

the tethering, docking, and fusion of vesicles with acceptor membranes. GTP hydrolysis

accelerated by GAPs completes the GTPase cycle, allowing recovery of prenylated Rab

GTPases as a soluble complex with RabGDI.

The interaction of Rab GTPases with regulatory factors and effectors reflects

multiple levels of specificity. The majority of known Rab exchange factors , GAPs and

effectors exhibit a high degree of specificity towards Rab GTPases, consistent with the

diverse regulatory mechanisms required for the function of Rab GTPases in distinct

trafficking pathways. Rab GDI , on the other hand, broadly recognizes members of the

Rab family but not other GTPase familes (93). Several Rab accessory factors exhibit an

intermediate level of specificity for distinct Rab sub-familes (95, 104, 109 305). The high

specificity of Rab effector interactions is reflected in the sequence diversity characteristic

of the Rab family and determined in part by hypervariable 'Rab complementarity
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determining regions ' (Rab CDRs), which include the N- and C- termini of the GTPase

domain as well as the a3/(35 loop (69 92). An indirect mechanism of effector

specificity determination involves sequence variabilty in the hydrophobic core, which is

reflected in the active conformation of a triad of invariant hydrophobic residues located at

the interface between the switch I and II regions (237). Although a phylogenetic analysis

indicates strong evolutionar conservation in the sequences of Rab GTPases that function

in common trafficking pathways (48), little is known about the determinants of Rab

subfamily recognition.

Mammalian suppressor of Sec4 (Mss4) binds tightly to the nucleotide free forms

of exocytic Rab GTPases but does not interact with endocytic Rab proteins (34 94).

Homologues of Mss4 are present in evolutionarily diverse species including both fission

and budding yeast, worms, fles, zebra fish and mammals (119). Overexpression of Mss4

or the budding yeast homologue Dominant suppressor of Sec4 (Dss4) suppresses the

lethal phenotype of temperature sensitive dominant negative Sec4 mutants (34 306).

Although viable, a Dss4 null exhibits a synthetic negative phenotype when combined

with a temperature sensitive mutant of Sec2, an essential Sec4 exchange factor (33).

Mss4 is broadly expressed in different tissues but is most abundant in the brain and is one

of the few factors that stimulates neurotransmitter release when injected into squid giant

nerve terminals (94). These observations implicate Mss4 proteins as Rab accessory

factors that regulate exocytosis in cooperation with more potent Rab GEFs (33,307 308).

Aberrant overexpression of Mss4 has been reported in a wide variety of malignant

tissues, including human pancreatic and colon cancers, suggesting a potential role in
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cancer progression through enhanced secretion of trophic factors required for tumor

proliferation and maintenance (309).

Studies employing Rab3A/Rab5 chimeras demonstrate that the determinants of

the broad recognition of exocytic Rab proteins by Mss4 reside within the N-terminal third

of the GTPase domain , which includes the P-Ioop as well as both conformational switch

regions (305). Within this region , exocytic Rab GTPases conserve a number of residues

that are variable in endocytic Rab proteins. Several of these residues have been

implicated in intramolecular interactions and thus may be conserved for functions other

than Mss4 recognition (18). For example, serine residues in the P-Ioop and switch I

region of exocytic Rab GTPases regulate the intrinsic and, potentially, the GAP

accelerated rates of GTP hydrolysis through hydrogen bonding interactions with the y

phosphate of GTP (18,239,310,311). Consequently, it is not clear which of the residues

conserved iIi exocytic Rab GTPases comprise the determinants for broad specificity

recognition by Mss4.

Rab5 has been implicated as a master regulator of endocytic vesicular trafficking,

from clathrin-coated vesicle budding to early endosome fusion. The function of Rab5 in

endosome fusion is mediated by several essential effectors, including the tethering factor

EEAl as well as the divalent effectors Rabaptin-5 and Rabenosyn-5, which possess

separate binding sites for the GTP-bound forms of Rab5 and Rab4

(53, 155 162 226 227,241,242 270). Rabex-5 (Rabaptin-5 associated exchange factor

for Rab5) was originally identified as a 60kDa protein that co-purified as a stable

endogenous complex with Rabaptin-5 (120). The Rabex- Rabaptin-5 complex
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cooperates with other factors to promote homotypic endosome fusion as well as the

heterotypic fusion of endocytic vesicles with early en do somes and has been shown to

catalyze nucleotide exchange for Rab5 (53 120, 154,242). Rabex-5 contains a central

region with homology to the yeast protein Vps9p, which was originally identified in a

genetic screen for defects in vacuolar protein sorting (44 120). Null and temperature

sensitive(mutations in the Vps9 gene result in enlarged vacuoles and improper sorting of

vacuolar proteins to the extracellular space (44).

The V ps9 Hidden Markov Model (HMM), as defined in the SMART and PF AM

databases, is a region of approximately 120 residues that is conserved in at least 

modular mammalian proteins, including Rabex-5, the RIN (Ras Interaction/Interference)

family of Ras effectors, and the ALS2 (Amyotrophic Lateral Sclerosis Type 2) protein

(312 313). Vps9p, the RlN proteins, and the ALS2 protein have been shown to posses

GEF activity for Rab5 or the yeast homolog Vps21/Ypt51 (45,314-317). The RIN

proteins co-localize with Rab5 and contain high affinity Ras association domains that

faciltate allosteric regulation of Rab5 nucleotide exchange activity by GTP-bound Ras

(317-319). RlNI knockout mice exhibit markedly enhanced long term potentiation in the

amygdala and increased formation of aversive memories (320). RINI also associates

with the BCR-ABL (Breakpoint Cluster Region-Ableson Kinase) fusion protein

potentiates the oncogenic activity of BCR-ABL in hematopoietic cells, and accelerates

BCR-ABL induced leukemia in mice (318 321). The human ALS2 protein contains an

terminal RCCI-like domain, a putative Dbl homology-pleckstrin homology (DH-PH)

tandem, and a series of MORN repeats in addition to a C-terminal Vps9 domain. A
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number of autosomal recessive single nucleotide polymorphisms (SNPs) in the ALS2

protein have been identified in individuals with a rare juvenile onset form of ALS and in

individuals with a clinically related syndrome referred to as Infantile Ascending

Hereditary Spastic Paralysis (IHASP). The known SNPs, including one in the Vps9

domain , are either single base deletions or non-sense mutations, resulting in truncation of

the ALS2 protein (322-326). When over-expressed in cultured cells, the truncated ALS2

proteins are targeted for rapid degradation by the proteosome (327).

Although the exchange activity of full length Rabex-5 appears to be specific for

Rab5 , it is weak compared with that observed for other well characterized GEFs (314).

The exchange activity of Rabex-5 is enhanced in the complex with Rabaptin- , which

does not possess intrinsic exchange activity (53). Whether the weak exchange activity of

full length Rabex-5 reflects an auto-inhibited state or is an inherent property of the

catalytic domain remains to be investigated. Furthermore, it is known that some GEFs,

notably those for Arf and Rho GTPases, have overlapping specificities for one or more

members of their respective GTPase familes (328-330). However, the specificity of

mammalian Rab GEFs, including those with Vps9 domains, has not been systematically

addressed, owing to the large size and phylogenetic complexity of the Rab family.

To identity Mss4 recognition determinants, eight of the residues selectively

conserved in exocytic Rab GTPases were examined in a structure based mutational

analysis of the interaction between Mss4 and Rab3A. The mutants do not show

significant effects on the rate of intrinsic nucleotide release. Five mutants exhibited Mss4

catalyzed release activities comparable to or greater than the wild type protein whereas
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three residues were found to be critical determinants of the interaction with Mss4. Two

of the critical recognition determinants lie within a consensus GEF interaction epitope

derived from the crystal structures of four mammalian GEF-GTPase complexes whereas

the residues that exhibit the least significant defects when mutated lie outside the

consensus epitope.

In addition, as a first step towards understanding the structural characteristics,

catalytic properties, and global Rab specificity of V ps9 domains, we have identified a

central 260 amino acid fragment of Rabex-5 with robust GEF activity for Rab5. The

crystal structure of this fragment reveals a novel fold for the SMART /PF AM V ps9

homology region, which corresponds to a sub-domain within the context of an integrated

tandem domain architecture. Acidic, hydrophobic, and polar residues on a conserved

surface of the Vps9 domain are shown to be critical for exchange activity. A quantitative

family-wide analysis of Rab specificity demonstrates that the central catalytic fragment

of Rabex-5 has selective exchange activity for Rab GTPases of the Rab5 sub-family.
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Experimental Procedures

Constructs All constructs were amplified with Vent polymerase (New England

Biolabs) and sequenced from both ends to ensure the absence of secondary mutations.

Human Rabex-5 constructs were sub-cloned into a modified pET15b vector containing an

terminal His6 tag (MGHHHHHHGS). Mammalian Rab GTPases were subcloned into

the PGEX-4Tl vector (Pharmacia), which provides an N-terminal GST tag followed by a

thrombin cleavage site. Rab8 , RablO, and Rabl7 , which could not be expressed in a

soluble form as fusions with GST , were sub-cloned into the pET44a vector (Novagen),

which incorporates an N-terminal fusion containing a 6xHis tag, the E. coli NusA protein

and a thrombin cleavage site. Site-specific mutants were generated using the Quick

Change Site-directed Mutagenesis kit (Stratagene).

Expression and Purifcation BL21(DE3)-RlL cells (Stratagene) transformed with

the modified pET15b vectors containing Rab or Rabex-5 constructs were grown at 20

in 2xYT -amp (16 g of Bactotryptone, 10 g of Bactoyeast extract, 5 g of sodium chloride

and 100 mg of ampicilin per liter) to an OD
600 of 0.2 and induced with 0.05 mM IPTG

overnight. For purification of wild type and mutant proteins, cells were resuspended in

lysis buffer (50 mM Tris-HCI , 50 mM NaCI, 0. 1 % mercaptoethanol), disrupted by

sonication, and centrifuged for 40 min at 35000g. For 6xHis fusion proteins, clarified

supernatants were loaded onto Ni-NTA agarose columns (Qiagen) and washed with 10

column volumes of Wash Buffer (50 mM Tris-HCI , pH 8. , 500 mM Nacl, 10 mM

imidazole, 0. 1 % mercaptoethanol). The 6xHis fusion proteins were eluted with a
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gradient of 10-150 mM imidazole in Elution Buffer (50 mM Tris-HCI , pH 8.5, 150 mM

NaCI , 0. 1 % mercaptoethanol). For GST fusion proteins, the supernatants were loaded

onto glutathione-sepharose columns (Amersham) and washed with 10 column volumes of

Wash Buffer. GST fusion proteins were eluted with 10 mM glutathione in Elution

Buffer. For Rab protein purifications , all buffers were supplemented with 0.5 mM

MgCI2' Wild type Rabex-5 constructs were further purified by anion exchange

chromatography over Source Q (Amersham) and gel fitration chromatography over

Superdex-75 (Amersham).

Crystallzation and Structure Determination Crystals of a selenomethionine-

substituted Rabex-5 construct (residues 132-394) were grown at 4 C in hanging drops

containing 12 mg/ml protein in 30% PEG 8000, 450 mM MgCI2' and 50 mM Tris pH 8.

Crystals appeared in 2-3 days and grew to maximum dimensions of 0.05 x 0. 1 x 0.2 mm

over 2 weeks. The crystals are in the primitive orthorhombic space group P2 2 with

unit cell dimensions a = 47.4 A , b = 68.7 A, c= 89.6 A. The volume of the unit cell is

consistent with one molecule in the asymmetric unit and a solvent content of 43%. Prior

to data collection, crystals were transferred briefly to a cryo-stabilzer solution (30% PEG

8000, 50 mM Tris, pH 8.0, 450 mM MgCI2, 10% glycerol) and flash frozen in liquid

propane. The structure was solved by multiwavelength anomalous diffraction (MAD) at

the selenium edge. Data were collected at the X12B beam line at the Brookhaven

National Synchrotron Light Source using an inverse beam strategy to maximize the

completeness and redundancy of Friedel pairs. Throughout data collection, the crystals
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were maintained at 100 K. Data were collected on two isomorphous crystals at four

wavelengths near the selenium edge: the f" maximum, the r minimum, and high as well

as low energy remote wavelengths (Table 6). Data were processed with Denzo and

scaled with Scalepack (247). Nine Se sites were identified by Patterson and direct

methods (SHELXS) using the Bijvoet differences in data collected at the f" maximum.

The heavy atom model was refined against a maximum likelihood target function using

SHARP (290). Following phase-improvement by solvent-flpping with Solomon, a aA-

weighted Fourier summation yielded an interpretable map with continuous main chain

density and clearly defined density for most side chains (291). An initial model was

constructed using ArpWarp and completed by manual model building in 0 (291,292).

The model was refined against data from 20 to 2.35 A using simulated annealing and

positional refinement in CNS and Refmac5 (291 331). The refined model, which

includes residues 134-387 81 water molecules, and an ordered Mg2+ ion, has an R factor

of 22.6% and a free R factor of 27.4% with excellent stereochemistry. The Mg2+ ion is

coordinated by non-conserved residues and does not have an obvious structural 

functional significance. Structural figures were generated with PyMol

(http://www . pymol.org).

Nucleotide Exchange Assays The kinetics of nucleotide exchange were measured

by monitoring either the quenching of fluorescence following the release of the

nucleotide analog 2' (3 ' bis- (N-methylanthraniloyl)-GDP (mant-GDP, Molecular

Probes) or the decrease in intrinsic tryptophan fluorescence accompanying conversion to

the active state. For mant-GDP assays , Rab proteins were loaded with the mant-GDP as



118

described (304) and diluted to 1.0 f!M in 50 mM Tris, pH 8.0, 150 mM NaCI, and 0.

mM MgCI . Samples were excited at 360 nm and the emission monitored at 440 nm.

For intrinsic tryptophan fluorescence measurements, Rab5 was diluted to 1.0 f!M in 20

mM Tris-HCl, pH 8. , 150 mM NaCI , and 0.5 mM MgCl2 and the emission monitored at

340 nm with excitation at 300 nm. For both intrinsic tryptophan and mant-GDP assays,

nucleotide exchange reactions were initiated by addition of 200 f!M GppNHp and

varying concentrations of Rabex-5132-39l' Data were collected using a Saphire

multimode microplate spectrophotometer (Tecan) or a PCl spectrofluorimeter (lSS).

Observed pseudo-first order rate constants (kobs) at each concentration of Rabex-5 were

extracted from a nonlinear least-squares fit to the exponential function

I(t) = (10 - 1 ) exp( - obs t) + 1

where let) represents the emission intensity as a function of time and 10 and 100 represent

the emission intensities at t = 0 and t = 00 , respectively. The catalytic efficiency, kcat

was obtained from the slope of a linear least-squares fit to

kobs = (kcat ) (Rabex-5) + kintr

where kintr is the intrinsic rate constant for GDP-release in the absence of Rabex-
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Results

Determinants of Rab GTPase Recognition

A structure based alignment of representative Rab sequences (Figure 27) reveals a

subset of residues that are highly conserved in exocytic Rab GTPases but variable in the

endocytic subfamily. Most of these residues fall within the N-terminal third of Rab3A

(residues 1-102) previously implicated in the interaction with Mss4 and cluster in or near

the P-Ioop and switch regions (305). Mutational and crystallographic studies of the

interactions between other monomeric GTPases and their cognate GEFs have highlighted

the importnce of residues in the P-Ioop and switch regions (114- 117 332). The majority

of the residues selectively conserved in exocytic Rab GTPases occupy exposed or

partially exposed positions in the structure of GppNHp-bound Rab3A (18). It is likely

that at least some of the residues conserved in exocytic Rab GTPases contribute directly

to the interaction with Mss4. In order to identify determinants of the broad recognition of

exocytic Rab GTPases by Mss4, eight of the selectively conserved residues (Ser31

Asp45, Phe51, Va152, Ser53, Lys60, Va161 , and Thr89) were targeted for mutational

analysis. To avoid complex phenotypes, the selected residues were converted to alanine,

which occurs naturally at each position in at least one Rab GTPase and is therefore

unlikely to disrupt the structure of the protein. Consistent with this expectation, all

mutants expressed in soluble form at wild type levels and exhibited no observable defects

during purification, with the exception of the D45A mutant, which formed higher order

oligomers as detected by gel fitration.



H::HH::::HH::HH..UJ::

~~~~~~~~~~~~~~

0'.. S...... H.. S.... U H rx H.. HH::::HH..H::......HHrxHHHHHF:r:UF:rxrx..F:

~~~ ~~~

r:u

eeeeefe!

~~~~~g;.

tSgjtS Hii
E- HE- E'E-8 .. t!8 Ii 
HHHHHH::....H 
E- E-E- E- E- E- UJ UJ UJ 

~~~ ~~~ ~~~

iinuunlnHHHH..HHHH$H..S:aaaaaaa
.............. rx:: r:.. rxrx

~~~~~~ .. 

o HHHH:::: ::::HU HH

gj gj 

:r 

88g 88gj: fB8...... H..::.. 8 H 
r:r:

~~~

888888HUJ 8a 

~~~~~~~ ~~~ ::..

t!t!t!

~~~~~~~~

w rx 
rx rxrx rx rx rx rx rx rxUJ z 

I= I= I= 

~~~~

f.H r. 
CI CI CI CICI t!S E5. i I CI 

~~~

ttl

&: ~~~

ft; 

g&1
M 0

8 8ZZZ :I. UJ UJ I1:: 

~~~

rx rx rx rx rx rx rx.. ..:I
r; 

jjj

rx UJuuuuuUUJUJZF:U88 
8 UJ 8 8 UJ UJ UJ UJ 8 UJ 8 8 8 

~~~~~~~~~~~~~~~

I1M

g! g! g! g! g! g! g! g! g! 

nnn

~~~~~ ~~~~~

11M

~~~~~~~

UJUJUJ

tHHHHH g g tH5

.. 

HHHHHHH....Hj2 ..

jjjjj

H......H..rx..::H.. H..

u U
1111

tD 
IW !: !:
.r! 0 0

1111 

.. 

I'..CI......ooU1('.. .. 0

~~~~ ~~~~~

00 U l1r.
GlJ:rorororororoHro E-1'

~~~~~~~~ ~~~~- -... ..;;; . ; ;: .. ! .

F:?.i'" j2i:.,:Fi 

.Y 

..:

I..,

:;" -- .-

r;-- ' r m

~~~ g:; ~~~

rx.. rx..::.. 

j: j:..

rx rx rx rx rx rx rx rx rx rx rx rx.. rx8UJr:r:Hr:r:..r:r:r:::aaZ ..j:8

~~~ ~~~~~~~~~~~~

GGG..H8HHj:8 HUJa

~~~

.:UJ

j: 

j:88 j:88UJUJ

UJUJUJ

~~~~~~~

r:888UJ888888U8HE-

~~~~~~~ ~~~~

o rx.. rxH.... rxHH..aw.rxrx rxrxrxrx 

.. ~~~~~~~ ~~~

rxHHHH ....H..H:;:S..I I I Z 1 I 

~~~~~~~ ~~~~~....

:I..

~~~~~~~~

..rx..H rxrx :srx.. UJf:
r:UJ

j: 

:I;:
U1'

~~~~

UJa a....H

.. 

.:ClCI .:r: ClUJa:: aa..Clj:j:..

~~~

a8UJw""UJeUJ UJUJ ..W
5SSS Q""

~~~~~~~~~~~~~~~~

a..rj: oo.j:8 :I8j:.: Z:Ir:j:Z 

.. j: 

:E.. ................ H

S g

~~~~~~

ClC1

~~~~~~

o ::::....::::ur: ::::::rxu
M.....H ........ 

.. ..::.... 

.... Hr: :: H..::HH 

r:irj:Zj: a..M HHHH::H ..rx..H

~~~~~ ~~~

j:a
:I :; HHH

.. 

::H
o r: ZZZ UJj:..'Z 

j: 

8 Z Z 
.. rx rx rx rx rx rx rx rx rx rx 

UJ UJ UJ UJ 8 UJ 8 8 8 8 UJ UJ 

~~~~~~~~~~~~

Zj:ZZj:j:UJZ:: ZUJj:88888888Zr:Z::ZE-
tD tD

U U
1111

tD 
IW !: !:
.r! 0 0

1111 

.. 

I'..CI......ooU1('.. 

~~~~ ~~~~~

00 U l1r.GI a. ro ro roro ro ro H ro E- II
r: t! 

120



.J 
=t_

==- - -

121

Figure 27. Structure based sequence alignment of representative Rab family and
related GTPases. Exocytic Rab proteins are indicated by bold face type. Residues that
are highly conserved in the exocytic Rab subfamily but variable in endocytic Rab
GTPases are highlighted in red. Residues highlighted in blue participate in direct GEF
contacts in the crystal structures of Ras-Sos, Arfl-Sec7 , Rac-Tiaml , and Ran-RCCI
(114- 117). The number of GEF contacts at each position is indicted below the alignment.
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The distal spatial relationship of the three critical recognition determinants

provides insight into the structural elements of exocytic Rab GTPases that mediate the

interaction with Mss4. As shown in Figure 28 , Phe51 lies at the N-terminus of the

Switch I region , near the phosphate and Mi+ binding site, whereas Val61 is located in

the (32 strand , just beyond the C-terminus of the switch I region while Thr89 resides at

the C-terminus of the a2 helix in the switch II region. Although Phe51 and Val61 are

completely exposed, Thr89 is only partially exposed in the GTP-bound form. Structural

data are not available for the GDP-bound form of Rab3A; however, the corresponding

residues in the GDP-bound form of Sec4 (the Rab3A homologue in budding yeast) are

either exposed or disordered (88). Consequently, the simplest interpretation is that

Phe51 , Val61 and possibly Thr89 contribute directly to the interface with Mss4, which

presumably explains (at least in part) their conservation in exocytic but not endocytic Rab

GTPases. Interestingly, Val61 and Thr89 flank an invariant triad of partially exposed

aromatic residues discussed previously (Phe59, Trp76 and Tyr91), located at the

hydrophobic interface between the switch I and II regions.

Crystal structures of nucleotide free EF- Tu, Ras, Arfl, Rac and Ran have been

solved in complex with their cognate GEFs (114-117 332). Despite the lack of structural

homology between the various GEFs and significant differences in the interaction

interfaces, some general principles have emerged. In all cases , the GEFs contact the

switch II region as well as the P-Ioop and/or switch I regions, resulting in structural

changes that disrupt interactions with the phosphates and Mg2+ ion. The extent of the

overlap in the various interaction interfaces can be represented in the form of a ' consensus
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Figure 28. Distribution of GTPase/GEF recogntion determinants with respect
to the crystal structure of GppNHp bound Rab3A (90). Extent of overlap in
GEF interaction epitopes deduced from the crystal structures of Ras-Sos, Arfl-Sec7,
Rac-Tiaml, and Ran-RCCI (114- 117) and mapped onto the surface of Rab3A.
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epitope obtained by assigning each position in an alignment of GTPase sequences a score

: I

equivalent to the number of known structures in which the corresponding residue lies

within the GEF interface. In Figure 28, the consensus epitope derived from the four

mammalian GTPase-GEF complexes of known structure (see Figure 27) is mapped onto

the surface of the Rab3A structure. For the numerous nucleotide free Rab-GEF

complexes whose structures have not been determined, I propose that the consensus

epitope can be interpreted as a map of the likelihood that any given residue in aRab

GTPase wil lie within the GEF interaction interface. Interestingly, two of the three

critical Mss4 recognition determinants identified by mutational analysis (Phe51 and

Va161) reside within the GEF consensus epitope whereas the three residues that exhibited

the weakest effects when mutated (Ser31 , Va152, and Lys60) lie outside the GEF

consensus epitope.

Vps9 stiulated Rab exchange

A fragment of Rabex-5 containing the Vps9 domain has high exchange activity.

The amino acid sequence of Rabex-5 encodes a modular architecture with five distinctive

regions: an N-terminal Cys4 type Zn2+ finger, a glycine and serine rich region, a central

region of predicted a helical secondary structure that includes the Vps9 homology

domain , a short stretch of heptad repeat, and a proline rich C-terminus. This modular

architecture is evolutionarily conserved in Rabex-5 homologs from diverse multicellular

organisms. Regions with weak but potentially significant similarity flanking the

SMART/PFAM Vps9 homology domain were detected in a manual alignment of twenty
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amino acid sequences from a variety of eukaryotic proteins with V ps9 domains (Figure

29 and Appendix 1). The additional homologous regions coincide with five predicted

helices at the N-terminus and one at the C-terminus.

A construct consisting of residues 132-391 , which includes the five predicted

helices N-terminal to the Vps9 domain as well as the additional helix on the C-terminal

side, expresses at high levels , behaves as a uniform monomer over a broad concentration

range, and exhibits potent GEF activity for Rab5 (Figure 30A). The observed rate

constant for the exchange reaction (kobs) depends linearly on the concentration of Rabex-

5132-391 to at least 2 !-M (the highest concentration tested). This observation places

lower limits on the values of the apparent Michaelis-Menten kinetic constants such that

cat 
1 s- l and K 2 !-M. Constructs that truncate one or more of the predicted

helices at the N- or C-terminus express poorly and/or are prone to aggregation when

purified. Consistent with this observation , Rabex-5132-39l is resistant to proteolysis by

LysC, GluC (V8 protease), ArgC, and chymotrypsin (data not shown). We therefore

conclude that a central 260 amino acid region of Rabex-5, which extends significantly

beyond the 120 aa SMART/PFAM Vps9 homology domain , represents the core catalytic

unit. This conclusion is further supported by the crystal structure and the results of a

mutational analysis of conserved residues (see below).

Tandem domain architecture of the catalytically active region of Rabex-5. The

crystal structure of selenomethionine-substituted Rabex-5132-394 was solved by

multi wavelength anomalous diffraction and refined to 2.35A (Table 6 and Figure 30B).

As ilustrated in Figure 30C , the Rabex-5 catalytic core consists of two distinct domains:
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Figure 29. Structure based sequence alignment of representative Vps9 domain
proteins. Residue numbers and observed secondary structure for Rabex-5 are shown
above the alignment. Fractional solvent accessibilty (sol acc) for each residue in the
HB-Vps9 tandem of hRabex-5 is indicated as a blue box with a continuous gradient scale
from exposed (light blue) to buried (dark blue). The consensus of physio-chemical
similarity at conservation levels of 60% (con 60%), 80% (con 80%), and 95% (con 95%)
is also shown. The consensus of secondary structure prediction for each sequence is
indicated by highlighting predicted helices in blue and predicted strands in orange. The
region of the SMART/PFAM Vps9 HMM is highlighted in yellow. An annotated
alignment of the twenty sequences used to determine the level physio-chemical
conservation is included as Appendix 1.
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Figure 30. Exchange kinetics and structure of the Rabex-5 catalytic core. (A)
Observed pseudo-first order rate constant for the exchange of GDP for GppNHpon
Rab5 as a function of the concentration of Rabex-5132-391. The large change in the
intrinsic tryptophan emission of Rab5 accompanying nucleotide exchange was con-
tinuously monitored at 340 nm with excitation at 300 nm. Data were collected and
analyzed as described in the Experimental Procedures. (B) Representative region of
the experimental map following phase improvement by solvent flpping. The densi-
ty contoured at 1.0 cr is shown with the final refined model. (C) Overall fold and
domain organization of Rabex-5132-394. The designation of domain boundares is
discussed in the text.
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an N-terminal four helix bundle (HB) and the C-terminal Vps9 domain, which has a

novel a helical fold that does not resemble other GEFs of known structure. Three of the

helices in the HB (aHB2 - aHB4) are arranged in the form of a triple stranded anti-

parallel coiled-coil with a right-handed super-helical pitch. The sub-domain

corresponding to the SMART/PFAM Vps9 HMM adopts a layered fold in which a helical

hairpin formed by aV2 and aV3 supports a middle layer consisting of aV4 and aV5.

The N-terminus of aV6 packs against the central portion of aV3, allowing the C-

terminus of aV6 to thread a V-shaped groove between aV4 and aV5.

Although the short helix following aV6 packs against the Vps9 domain and was

required for soluble expression , two observations indicate that this helix (aCl) is not a

generally conserved element of the Vps9 domain: (i) the sequence similarity following

the Vps9 domain is weak; and (ii) the location of the Vps9 domain at the C-terminus of

the ALS2 and Q9P207 proteins precludes the possibilty of an analogous helix. In

contrast, significant similarity is evident in the structure-based manual alignment of the

sequences N-terminal to the SMART/PFAM HMM (Figure 29 and Appendix 1). This

region encodes an amphipathic helix (a V 1) followed by an ordered stretch of random

coil. The non-polar surface of a V 1 rests in a hydrophobic groove formed by the C-

terminus of aV6 and the connecting segment between aV4 and aV5. Likewise , non-

polar residues in the ordered random coil following a V 1 pack against non-polar residues

from aV4. Given the overall conservation of physiochemical similarity for the residues

that lie within these interfaces, we conclude that the Vps9 homology domain begins with
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aVI and terminates with aV6. This structural definition of the Vps9 domain wil 

retained in subsequent discussion.

A striking feature of the Rabex-5 structure is an extensive interface between the

helical bundle and the Vps9 domain. In this interface, which buries 1940 A of surface

area, residues from one side of aHB4 pack in a shallow groove between aV5 and the

connecting loop of the aV2/aV3 helical hairpin. Of particular note is a solvent excluded

hydrogen bonding interaction between the buried carboxylate group of a highly

conserved glutamic acid residue in aHB4 (Glu212) and the main chain NH group of

Arg285 at the N-terminus of aV3. This interaction is enhanced by the favorable

disposition of the negatively charged side chain of Glu212 with respect to the positive

end of the aV3 helix dipole. An analogous solvent excluded hydrogen bonding

interaction occurs between the carboxylate group of Asp235 in a V 1 and the main chain

NH and side chain hydroxyl groups of Ser333 at the N-terminus of aV5. Consistent with

this observation , mutation of either acidic residue to alanine results in mutant proteins

that do not express in a soluble form whereas alanine substitutions involving exposed

acidic residues have no effect on solubilty (see below).

The catalytically active region of Rabex-5 has high specifcity for two Rab

GTPases. To gain insight into the family-wide specificity of Rab effectors and regulatory

factors, the Lambright lab has constructed a panel of 37 mammalian Rab GTPases

representing the known Rab family excluding highly homologous isoforms. The majority

(32 of the 37 Rab GTPases) expressed in a soluble form with GST fused to the N-

terminus. Three Rab GTPases (Rab8 , Rab 1 0, and Rab 17) that were not soluble as GST -
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fusions could be expressed in a soluble form with NusA as an N-terminal fusion partner.

Two Rab GTPases (Rab36 and Rab37) could not be expressed in a soluble form as either

GST or NusA fusions. The fusion-proteins were purified to 95% homogeneity as

determined by SDS-PAGE (see Experimental Procedures). With the exception of RablO

Rab 17 , Rab26 and Rab28, all of the soluble Rab GTPases exhibited an intrinsic ability to

exchange nucleotide and hydrolyze GTP, indicative of a folded, functional state.

A well established approach for measuring the kinetics of nucleotide release from

monomeric GTPases , including Rab GTPases , takes advantage of the fluorescent GDP

analog mant-GDP, which has an N-methylanthraniloyllabel attached to the 21- and/or 3

hydroxyl group of the ribose moiety (304 308 333 334). Release of GDP-mant is

accompanied by a large decrease in emission intensity, as the environmentally-sensitive

fluorescence of the mant label is efficiently quenched in bulk solution. A particular

advantage of this assay in the present context is that it can be readily adapted to

microplate format, allowing efficient kinetic screening over a broad range of GEF

concentrations.

The ability of Rabex-5132-39l to catalyze the release of GDP-mant from 34 Rab

GTPases was determined using a quantitative microplate assay. Representative results

for 33 Rab GTPases are shown in Figure 31. Under the conditions of these assays , in

which the concentration of Rabex-5132-39l is varied over a broad range from 20 nM to 

!!M, measurable GEF activity was observed for only three Rab GTPases: Rab5 , Rab21

and Rab22. For the Rab GTPases analyzed (excluding Rabl0, Rabl7, Rab26, and

Rab28), addition of 10 mM EDT A , which reduces the free Mg2+ concentration to sub-
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Figure 31. Family-wide analysis of Rab specifcity. (A) Kinetics of mant-GDP release
from GST -fusions of Rab5, Rab21, Rab22, and Rab6 in the absence (light blue) and
presence of 0. 02 M (red), 0. M (dark blue), 0. M (green), and 1 M (black) Rabex-
5132-391 or following addition of 10 mM EDT A (yellow). (B) Dependence of the
observed pseudo-first order rate constant for mant-GDP release on the concentration of
Rabex-5132-39l'
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micromolar levels, greatly stimulates the rate of nucleotide release, indicating that the

absence of detectable GEF activity for the majority of Rab GTPases is not due to an

inability to release GDP-mant but instead reflects high intrinsic specificity in the

interaction with Rabex-5132-39l'

For the three Rab GTPases that exhibited GEF-stimulated nucleotide release in

the initial screen, a more detailed set of kinetic experiments was conducted. Whereas the

catalytic efficiency (kcat ) of Rabex-5132-39l for Rab5 and Rab21 is indistinguishable

within experimental error, it is '" 100 fold lower for Rab22. Although a similar kinetic

analysis is not possible for the other Rab GTPases examined in this study, the absence of

detectable GEF activity implies limits on the relative catalytic efficiency. Accounting for

the signal-to-noise of the measurements and the readily detectable though weak GEF

activity for Rab22, we conservatively estimate that the kcat m for the majority of other

Rab GTPases must be at least several hundred fold lower than that observed for Rab5.

Thus, Rabex-5132-39l exhibits equally robust GEF activity for Rab5 and Rab21 , weak

activity for Rab22, and insignificant or no activity for the 28 other Rab GTPases for

which nucleotide release could be effectively stimulated by addition of EDT A.

Residues in a conserved surface of the Vps9 domain are critical for GEF activity.

A number of residues that are exposed in the Rabex-5132-39l structure exhibit a high

degree of conservation in the two other mammalian proteins (RIN 1 and ALS2) that

contain Vps9 domains and have been shown to catalyze nucleotide exchange for Rab5.

A similar overall pattern of conserved surface residues is evident in the larger alignment

of 20 Vps9 domain proteins from diverse organisms. As shown in Figure 32, the



136
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C361 N358

100%
Physio-Chemical Similarity

Figure 32. Correlation of solvent exposure with sequence conservation. The
conservation of physio-chemical similarty in a sequence alignment of twenty Vps9
domain proteins (see Figure 29) was mapped onto the surface of the Rabex-5132-394
structure. The orientation of the top view corresponds to that of Figure 2C. The
orientation of the top and bottom views are related by a rotation of 180 about the
vertical axis. Note that the only invarant residue in the Vps9 domain (Asp313) is
entirely solvent exposed and lies adjacent to a conserved groove comprised primar-
ly of exposed non-polar residues.
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majority of conserved, solvent exposed residues cluster on a common surface of the Vps9

domain. Of particular note is an aspartic acid residue (Asp313) in the short, ordered

aV4/aV5 loop. The side chain of Asp313 , which represents the only invariant residue in

the SMART/PFAM Vps9 HMM, is completely solvent exposed and does not engage in

intramolecular stabilzing interactions. Intriguingly, Asp313 is situated immediately adja-

cent to a shallow hydrophobic groove formed by residues from aV4 and aV5. A small

number of conserved residues are visible on the opposite surface; however, these residues

are generally more buried and are therefore likely to be conserved for structural stabilty.

To identify determinants of Rab GEF activity, conserved or partially conserved residues

with substantial solvent exposure were substituted with alanine. All of the mutant

proteins expressed in a soluble form at wild type levels and were well behaved in

solution. This contrasts with the lack of soluble expression for alanine mutants of the two

buried acidic residues , Glu212 and Asp235 that, as discussed above, are predicted to be

critical for structural stabilty. The abilty of Rabex-5132-39l mutants to catalyze release

of mant-GDP was determined for both Rab5 and Rab21. As shown in Figure 33,

mutation of four exposed residues (Asp313, Pro317 , Tyr354, and Thr357) that are

clustered near the N-termini aV4 and aV6 resulted in severely impaired catalytic

efficiency. Mutation of three residues flanking the critical cluster (Thr349, Glu351 , and

Asn358) resulted in moderate defects whereas mutation of other residues had minimal

effect. Notably, the severity of the defects resulting from alanine substitution is strongly

correlated with both the conservation of physiochemical similarity and the degree of

solvent exposure. Consequently, the simplest interpretation is that the contiguous surface
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Figure 33. Mutational analysis of the predicted Rab binding surface. (A) The
catalytic efficiency (kcatl) of mutant (mut) and wild type (wt) Rabex-5132-39l was
determined for GST fusions of Rab5 and Rab21. To simplify comparison, the
results are expressed as the ratio of kcatl for mutant proteins relative to that of the
wild type protein. (B) Mutated residues are colored according to the relative
(kcatl) for mutant and wild type Rabex-5132-39l with GST-Rab5 as the substrate.
Note that the severity of the defects are strongly correlated with the conservation of
physiochemical similarty as well as the degree of solvent exposure (compare with
Figure 32).
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formed by conserved residues from aV4 and aV6, as well as the loops N-terminal to

these helices, corresponds to the overlapping interaction epitopes for Rab5 and Rab21.

Structural similarity in the GTPase binding sites of Vps9 and Sec7 domains. 

the level of the overall fold, the Vps9 domain does not exhibit obvious structural

similarity to other exchange factors as judged by fold recognition using the DALI server

or by visual inspection (335). However, the functionally critical sub-structure of the

V ps9 domain, consisting of the a V 4 and a V 6 helices, bears a striking resemblance to an

analogous pair of helices in the Sec7 domain that account for the majority of the

interactions with Arf GTPases (Figure 34). In the Sec7-Arf complexes, the aG and 

helices of the Sec7 domain engage the switch regions of Arf such that non-polar residues

from the switch I region dock in a hydrophobic groove between the N-terminus of aG

and the C-terminus of aH while residues from the switch II region interact primarily with

residues from aG (234-236). The 'glutamic acid finger in the loop preceding aG plays a

critical role in promoting GDP release and, in the complex with nucleotide free Arf

intrudes into the nucleotide binding site to interact with the invariant lysine residue in the

GK(S/T) motif that encodes the phosphate binding loop. Like the Sec7 domain, the

Vps9 domain also contains a hydrophobic groove at the N-termini of the aV4 and aV6

helices as well as an analogous 'aspartic acid finger' in the loop preceding a V 4. As

demonstrated by the mutational analysis, both the invariant aspartic acid finger (Asp313)

and at least one highly conserved aromatic residue in the hydrophobic groove (Tyr354)

are critical determinants of exchange activity. These observations suggest the intriguing

possibilty that the Vps9 and Sec7 domains might share a similar mode of interaction

with their respective GTPases, despite dissimilar overall structures.
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Figure 34. Comparison of the Vps9 and Sec7 domains. The HB- Vps9 tandem of
Rabex-5 is compared with the Sec7 domain of Geal from the complex with Arl
GDP and Brefeldin A (234). In the Sec7 domain , a pair of helices and adjacent loop
regions (highlighted in blue) account for the majority of contacts with Arfl
(semitransparent orange). An analogous pair of helices and adjacent loops in the
Vps9 domain contain all of the conserved residues with significant solvent exposure
as well as the known determnants of GEF activity. Critical glutamate (Sec7) and
asparate (Vps9) residues are shown in red.
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A SNP in ALS2 disrupts the structure and GEF function of the Vps9 domain. 

high degree of physiochemical similarity for residues implicated in structural stability

and exchange activity suggest that the crystal structure of the tandem HB-Vps9 domains

of Rabex-5 should serve as a useful working model for the corresponding catalytic

regions of other Vps9 domain GEFs including the ALS2 and RIN proteins. One of the

known SNPs in the ALS2 gene (4844 T) corresponds to the deletion of a single base in

an exon encoding part of the Vps9 domain of ALS2 (324). The 4844 T SNP, which

generates a frame shift at the codon for a residue located near the N-terminus of aV3,

replaces the C-terminal half of the Vps9 domain with 43 residues of non-native sequence

(Figure 35). It is clear that the 4844 T SNP severely disrupts the structure of the Vps9

domain, eliminating most if not all of the residues implicated as critical for the interaction

with Rab GTPases and exposing many non-polar residues that would otherwise be buried

in the hydrophobic core. Furthermore, the frame-shifted sequence following 4844

encodes a high percentage of non-polar residues, which likely exacerbates the severity of

the structural defect. In RIN1 , a splice variant that deletes the region from the N-

terminus of aHB4 to the N-terminus of aV2 fails to interact with Rab5 in a two-hybrid

assay. This region contains the two conserved/buried acidic residues which appear to be

critical for structural stabilty and are essential for the soluble expression of the Rabex-

HB-Vps9 tandem. Thus, the inabilty of the RINI splice variant to interact with Rab5

likely results from an indirect structural defect rather than the loss of critical exchange

determinants.
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Figure 35. Correlation of structure and function in Vps9 domain proteins. The
structure and mutational analysis of the HB- Vps9 tandem of Rabex-5 provides
insight into functional observations from published work on the RINI and ALS2
proteins. A SNP in the Vps9 domain of the ALS2 protein (yellow) replaces the core
of the Vps9 domain , including highly conserved residues that are critical for
exchange activity (gray), with 43 residues of non-native sequence (324). A splice
varant of RIN1, which deletes a region from aHB4 to the N-termnus of aVl, fails
to interact with Rab5 in a two hybrid assay (317). Mutation of buried acidic resi-
dues in the corresponding region of the Rabex-5 HB- Vps9 tandem prevents soluble
expression, presumably due to a folding defect. Likewise, the loss of exchange
activity resulting from mutation of a conserved leucine residue in ALS2 is an indi-
rect consequence of its bured location in the hydrophobic core (316). Conversely,
loss of exchange activity resulting from mutation of a conserved proline residue in
ALS2 most likely reflects its parially exposed location within the exchange epitope.
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Discussion

A consensus GEF interaction epitope derived from crystal structures of distantly

related nucleotide free GTPases in complex with non-homologous GEFs provides a

convenient framework for assessing the general significance of the mutational data on

GEF interactions with Rab GTPases. Two critical determinants for recognition of

exocytic Rab GTPases by Mss4 (Phe51 and Va161) lie within the GEF consensus epitope

as do three of the Y ptl residues implicated in the interaction with Dss4 
(corresponding to

switch II residues Arg85 , Ile87 and Thr89 in Rab3A) as well as four Rab3A residues

found to be important for interaction with Rab3 GRF (Phe51 , Thr54, Val55 and Phe59).

Conversely, mutants which exhibited relatively small effects on Mss4 stimulated

exchange activity involved residues outside the consensus epitope (Ser31
, Va152 , and

Lys60). Thus, the available crystallographic and mutational data on Rab GTPases

strongly supports a mode of GEF interactions similar to other GTPase familes

suggesting that the GEF consensus epitope wil serve as a meaningful likelihood

predictor for the large family of Rab GTPases.

The crystal structure of the catalytically active core of Rabex-5 reveals an

integrated architecture in which the Vps9 domain interacts extensively with an N-

terminal helical bundle. In addition to the structural evidence, the lack of soluble

expression for either the isolated Vps9 domain or the E212A mutant at the HB-
Vps9

domain interface supports the conclusion that the helical bundle and Vps9 domain

function together as a catalytic tandem. Several independent observations suggest that an

terminal helical bundle, or an analogous helical domain, is likely to be a general
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feature ofVps9 domain proteins. First, residues in the Rabex-5 Vps9 domain that contact

the helical bundle are conserved. Second , the sequences of Vps9 proteins encode four

predicted helices N-terminal to the Vps9 domain with significant overall similarity to the

helical bundle of Rabex-5. Given that the region N-terminal to the Vps9 domain in some

proteins contains more than four predicted helices , it is conceivable that larger helical

domains could substitute for the helical bundle. Third, the level of sequence conservation

within elements of predicted secondary structure is strongly correlated with the degree to

which residues are buried in the Rabex- structure. Finally, a construct of RINI

corresponding to the HB-Vps9 tandem of Rabex-5 can be expressed in a soluble form and

has comparable catalytic activity and Rab specificity (data not shown). Moreover, a

splice-variant of RIN1 , which deletes the region from the N-
terminus of aN4 to the N-

terminus of aV2, fails to interact with a dominant negative mutant of Rab5 in a yeast

two-hybrid assay, as does a construct that begins at the N-terminus of aVI and extends

through the C-terminus of the protein (317).

A tandem domain architecture has been observed in GEFs for other GTPases

familes. For example, the Sos (Son of sevenless) protein contains two distinct GEF

activities, a DH-PH tandem that functions as a Rac GEF, and a Ras GEF tandem

consisting of a N-terminal helical domain and the core catalytic domain (114 336,337).

In the latter case , the GTP-bound form of Ras stimulates Ras exchange activity by

binding at the interface between the two domains and inducing a conformational change

that allows the N-terminal domain to contribute to the interaction with the nucleotide free

form of Ras (336). The DH-PH tandem of Rho family GEFs exhibits considerable
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structural variabilty with respect to the arrangement of the DH and PH domains

(116 338-341). In at least one instance, the PH domain directly contacts the nucleotide

free form of the GTPase , an interaction that is importnt for exchange activity (338 339).

In Rabex- , the surface of the helical bundle is poorly conserved, suggesting that the

helical bundle is not directly involved as a general determinant of the interaction with

Rab GTPases. Nevertheless, both structural and functional observations suggest that the

helical bundle contributes indirectly to exchange activity by stabilzing the V ps9 domain.

Beyond a structural role, it is possible that the helical bundle may playa role in allosteric

regulation ofGEF activity, which has been observed in RlNI (317).

An earlier investigation of the kinetics of nucleotide exchange in full length

Rabex- , as well as the yeast Vps9 protein, concluded that these GEFs are relatively

weak exchangers for Rab5 compared with other well characterized GEFs, in particular

RCCI and EF-Ts, which catalyze exchange for Ran and EF-Tu, respectively (314). I also

observe equivalently weak Rab5 exchange activity for full length Rabex-
5 (data not

shown) even though the HB-Vps9 tandem , when expressed independently, has much

more robust GEF activity. The reaction velocity of full length Rabex-5 saturates in the

nM concentration range (K = 270 nM) with a kcat of 0.007 s- l (314). For the HB-Vps9

tandem , on the other hand, K :; 2 M and kcat :; 0. 1 s- . One possible explanation is

that the low catalytic activity of full length Rabex-5 reflects incomplete or improper

folding of one or more domains in the bacterially expressed protein. In support of this

view , Rabex-5 in complex with its cognate binding partner Rabaptin-5 has higher

exchange activity for Rab5 compared with Rabex-5 alone (53). An al ternati ve
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hypothesis, motivated by the observation of allosteric regulation in RlNI and Sos , is that

the lower exchange activity of full length Rabex-5 reflects auto-inhibition by regulatory

elements in the regions N- and/or C-terminal to the HB-Vps9 tandem. In the context of

this model, it is possible that the interaction of GTP-bound Rab5 with Rabaptin-5, in

addition to its role in endosomal targeting, might stimulate the GEF activity of the HB-

Vps9 tandem. Additional experiments are necessary to distinguish between these

possibilties.

We have shown that the HB-Vps9 tandem of Rabex-5 has equivalently high

catalytic efficiency for Rab5 and Rab21, weak (100 fold lower) catalytic efficiency for

Rab22 , and no detectable activity for 28 other Rab GTPases for which nucleotide release

can be stimulated by addition of EDT A. A phylogenetic analysis of Rab GTPases from

diverse organisms identified eight distinct sub-familes, one of which (sub-family V)

consists of threeRab GTPases: Rab5 , Rab21 , and Rab22 (48,60). Thus, the HB-Vps9

tandem of Rabex-5 selectively recognizes sub-family V Rab GTPases, although it shows

a strong preference for Rab5 and Rab21 over Rab22. Despite similarity within 'sub-

family motifs , inspection of the full Rab-family alignment does not reveal a simple

pattern of substitutions that could account for the observed specificity. It is therefore

likely that the structural basis for highly selective recognition of the HB- V ps9 tandem by

Rab GTPases involves multiple determinants.

Little is currently known about Rab21, although it is reported to have a relatively

broad tissue distribution and to localize to the ER in unpolarized epithelial cells and to an

apical pool of vesicles in polarized cells (342). Rab22 localizes to EEA1-positive
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endosomes as well as the TGN and is proposed to regulate transport between the TGN

and endosomes (285 343,344). Interestingly, the N-terminus of EEAl binds Rab22 as

well as Rab5, suggesting a possible molecular mechanism for regulating the fusion of

endosomes with vesicles derived from the TGN (285). Furthermore, the Rabaptin-

5/Rabex-5 complex has recently been shown to interact with GGA proteins, which

associate with the cytosolic face of the TGN and function as Arf-dependent clathrin

adaptors (345). One possibilty is that GGA-dependent recruitment of the Rabaptin-

5/Rabex-5 complex to the TGN leads to activation of Rab22, which may in turn be

required for the fusion of TGN-derived vesicles with endosomes. The weak catalytic

effciency of the Rabex-5 HB-Vps9 tandem for Rab22 would seem to suggest that Rab22

may not be a physiological substrate; however
, if the weak activity in vitro reflects a high

m rather than a low kcat' then the locally high concentrations resulting from co-

localization might conceivably overcome a low affinity for the GDP-bound form of

Rab22. Additional studies wil be required to characterize the Rab specificity of the other

proteins that contain Vps9 domains and determine whether these proteins and/or the

Rabaptin-5/Rabex-5 complex function as Rab21 and/or Rab22 GEFs in vivo.

Since the ALS2 gene was cloned , nine SNPs from different familes have been

identified throughout the coding region (322-326). All of the SNPs involve frame shift or

non-sense mutations that result in C-terminal truncations, the clinical severity of which

does not correlate with the extent of the truncation (322). Given that the truncated

protein products lack part or all of the C-terminal Vps9 domain, it has been suggested

that the motor neuron degeneration associated with the ALS2 SNPs might result from
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loss of Rab5 GEF activity (316). However, it has recently been demonstrated that the

various ALS2 SNPs , including that in the Vps9 domain, give rise to unstable proteins that

are targeted for degradation by the proteosome (327). From the structural and functional

data presented here , it is clear that the SNP in the Vps9 domain necessarily results in a

major structural defect in addition to eliminating critical determinants of GEF activity.

The identification of point mutants that severely impair GEF activity without apparent

effect on the structure of the Rabex-5 HB-Vps9 domain tandem, should provide useful

reagents for exploring the in vivo consequences resulting from impaired GEF activity in

ALS2 as well as other proteins which contain Vps9 domains.
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CHAPTER V

DISCUSSION

Determinants of Effector Recognition

As critical regulators of membrane trafficking, the function of Rab GTPases is

contingent upon specific interactions with effector proteins in the active state. In the

inactive state, however, Rab proteins maintain the ability to interact with general

accessory factors, such as REP and RabGDI. A model for Rab effector binding put forth

by Ostermeier and Brunger suggests that Rab protein specificity is generated through

interactions with the hypervariable CDRs whereas the nucleotide state is detected by

interactions with the relatively conserved switch regions (Figure 5B). Consistent with

this model, structural data for the active conformation of heterotrimeric G-proteins, the

second largest GTPase family, demonstrates an identical conformation for the switch

regions (265-267). Comparison of the Rab5C and Rab3A structures demonstrates that

the active conformation of the switch regions provides information concerning Rab

identity as well as the nucleotide state, and therefore serves as a determinant of Rab

specificity. Of particular note is the conformational variabilty of invariant hydrophobic

residues at the switch interface, which make critical contributions to effector binding in

the Rab3A/Rabphiln-3A complex.

The switch regions of activated Rab proteins are composed primarily of residues

that are highly conserved in Rab family members. The unexpected conformational
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variabilty observed in the switch regions can be explained by nonconservative

substitutions in flanking regions that vary between or even within Rab subfamiles. It is

likely that the marginal conformational stabilty of the switch regions in the active state

makes them sensitive to the variabilty of the flanking regions against which they pack.

These features of Rab GTPases provide a mechanism for generating specificity in the

active state while preserving the abilty to recognize general accessory factors in the

inactive state. They may have also faciltated expansion of the Rab GTPase family to

accommodate the large number of functionally distinct members.

The interaction of Rab5C with EEAl and Rabenosyn-5 shows no significant

difference in affinity for the full lengt protein compared with the GTPase domain, which

partially truncates CDRs 1 and 3. This truncation does not, however, affect the a3/(35

loop corresponding to CDR 2 and leaves part of CDR 1 and 3 intact. Also relevant is the

size of the interaction epitope and affinity of the effector interactions. In chapter III, the

compact (40 aa) C2H2 Zn2+ fingers of EEAl and Rabenosyn-5 were shown to be

effectors of Rab5C. Furthermore , the C2H2 Zn2+ finger in EEA 1 is both necessary and

sufficient for Rab5C binding to the N-terminus of EEA1. Structural homology models

suggest that it is unlikely the H2 Zn2+ finger of EEAl or Rabenosyn-5 could contact

both the switch regions, by definition an essential requirement for an effector interaction

as well as the CDR regions of Rab5C. The low micromolar affinity of the Rab5C/EEAl

interaction also contrasts with the 1O-20nM affinity of the Rab3A/Rabphiln-3A complex

(346). While both Rab/effector interactions appear to involve buried hydrophobic surface

area, the 100 fold difference in affinity is likely a reflection of the 2800A 2 of buried
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surface area in the Rab3A/Rabphiln-3A complex in comparison to the relatively small

hydrophobic surface area of the predicted Rab5 binding epitope in the EEAl homology

model (90). These observations are consistent with the hypothesis that the hydrophobic

switch interface may comprise the entire interaction epitope for some if not the majority

of Rab effectors. Viewed from this perspective, the large interaction epitopes , observed

in complexes such as Rab3A/Rabphiln-3A or Rab27 A/Melanophiln, serve to enhance

affinity of Rab/effector interactions where necessary, without loss in specificity

(90 347 348).

Further analysis of both Rab GTPase structure and Rab/effector interactions is

necessary to test this alternative hypothesis for Rab/effector specificity determination. 

far, each Rab GTPase structure determined has shown a unique conformation with

respect to the invariant hydrophobic triad highlighted in the Rab5C structure , indicative

of combinatorial variability in the conformation of the switch regions (Figure 36). The

determination of additional Rab structures wil test the extent of structural variabilty

within the Rab family and establish whether Rab subfamiles have similar or distinct

active conformations. With respect to the switch interface, the structures of subfamily V

members Rab5C and Rab22 are highly related, whereas subfamily VII members Ypt7

and Rab9 show litte similarity (Sudharshan Eathiraj, personal communication) (349).

This is consistent with the observation that Rab5 and Rab22 both interact with the C2

2+ finger at the N-terminus of EEAl (162,285).

A more thorough analysis , by mutagenesis or chimeric studies, should provide a

better understanding of the role of the hypervariable CDRs in membrane targeting and
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RabS
Rab:,
Rab4
Rab33

Figure 36. Combinatorial Variation in the Rab Switch Interface. Comparson
of multiple Rab GTPase structures demonstrates a unique conformation at the
switch interface consistent with a potential epitope for both Rab and nucleotide
specificity. Rab5 shown in blue, Rab3 in orange, Rab4 in green and Rab33 in
magenta.
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effector recognition. The identification of more Rab effectors coupled with the analysis

of their affinity and interaction epitopes would provide insight into the role of the CDRs

and whether the mode of interaction observed in the Rab3A/Raphiln-3A complex

represents an exception or the rule (90). The most critical data necessary for a definitive

understanding of Rab/effector interactions is additional structures of Rab/effector

complexes by either NMR or crystallographic methods. The characterized interaction

epitope for the C2H2 Zn2+ finger of both EEAl and Rabenosyn-5 should provide an

excellent opportunity to obtain structural information for a complex with Rab5 or Rab22.

Characteristics of Rab GTPases

The structure of Rab5C provided additional evidence of how Rab GTPases differ

with respect to Rab3A as well as other GTPase familes. Overall , the conclusions derived

from the structure of Rab3A in comparison to heterotrimeric G-proteins, Ras and other

GTPases familes are consistent with the Rab5C structure and have subsequently been

corroborated by additional Rab structures (18,88,90,239 256,349,350). For example,

variations in nucleotide contacts appear to account for differences in intrinsic nucleotide

exchange and hydrolysis rates. Careful analysis of the growing number of Rab GTPase

structures and comparison with measured rates for both intrinsic exchange and hydrolysis

could provide insight into the structural bases for enzymatic variabilty.
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EEAl Mediated Endosomal Tethering

Through regulated effector recruitment, Rab proteins appear to support the

formation of membrane subdomains and may be integral in defining organelle identity. It

has been suggested that small pools of activated Rab GTPases may recruit additional

factors and/or complexes that tether incoming vesicles , promote membrane association

and activate SNARE mediated fusion. Chapter III provided additional evidence that the

endosomal associated EEA 1 may function in tethering of CCV s with the endosome.

The structure of the C-terminal region of EEA 1 bound to the head group of

Ptdlns(3)P reveals an organized quaternary assembly consisting of a parallel coiled-coil

and a dyad symmetric FYVE domain homodimer. The unique mode of membrane

engagement deduced from the quaternary structure of the C-terminal region combined

with the characterization of Rab5 binding at the N-terminal C2H2 Zn2+ finger provides

insight into the structural basis of endosome tethering. As depicted in our hypothetical

model (Figure 26), the predicted coiled-coil from residues 281- 1346 could project a

significant distance ('" 170 nm) into the surrounding cytoplasm. CCV s from the plasma

membrane containing activated Rab5 could then be tethered through the N-terminal

interaction and recruitment of additional Rab5 effectors including hVps34 would increase

Ptdlns(3)P and EEAl on the vesicular membrane. The low micromolar affinity between

Rab5C and the N-terminus of EEAl would likely be amplified by simultaneous

interaction of an EEAl dimer with two membrane bound Rab5-GTP molecules, allowing

for stable tethering with sufficient dynamic flexibilty to promote fusion.
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The elongated structure depicted in Figure 26 is based on the prediction of coiled-

coil over the majority of the EEAl protein. However, there is no experimental data

available concerning the structure within most of this region. Electron microscopy (EM)

studies with immunogold-Iabeled EEAllocate the N-terminus around 50 nm from the

endosome membrane , suggesting that the coiled-coil region may contain additional bends

or kinks (282 351). By EM, the predicted heptad repeat of the yeast tethering factor

Usolp has been shown to form an extended coiled-coil of "'45 nm (156). A similar

analysis could be performed for full-length EEAl to test our hypothesis of an elongated

structure and identify potential hinge regions. Purification of additional full-length

proteins including prenylated Rab5 may allow in vitro reconstitution of tethered

intermediates. Although reconstitution assays have been conducted for partially purified

systems, assays using highly purified protein wil allow for the identification of

additional endosomal requirements for tethering and fusion events. If sufficiently stable,

isolated tethered intermediates could be further analyzed by light or electron microscopic

techniques.

Recent observations on the complex of Arl- l and the GRIP domain of the effector

Golgin-245 serves as an interesting corollary with studies on EEAl (Figure 37)

(352 353). The GRIP domain homodimer is ideally configured to interact with two

molecules of Arl- l, providing the driving force for stable membrane anchoring. This

organization is reminiscent of the organized quaternary structure of the EEA 1 C-terminal

region that ideally positions the FYVE domain dimer for membrane engagement (Figure

17 & 18). The Arl- lIGRlP complex is further analogous to the proposed model for how
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Figure 37. Schematic model of recruitment of Golgin-245 by Arl-l. The Arl-
GTP could recruit Golgin-245 to the Golgi membrane by interacting with its GRIP
domain. Golgin-245 forms a parallel dimer in which its coiled-coil region and GRI
domain are independently dimerized. Each subunit of the GRIP dimer interacts sep-
arately with one Arl- GTP molecule, thus efficiently anchoring Golgin-245 to the
membrane. Switch I, inters witch, switch II regions and the N-termnal region of
Arl- l are black, blue, magenta and red respectively. GDP and GTP molecules are
shown in stick models and Mg2+ as cyan sphere. Figure taken from Wu et aI., 2003.
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the dimeric C2H2 Zn2+ finger region of EEAl interacts with two molecules of activated

Rab5 on endosomal membranes. In addition, the size of the interaction epitope and the

engagement of the switch regions of Arl- , but not other regions , is consistent with the

predicted mode of Rab5 binding to the C2H2 Zn2+ finger of EEA 1. In both cases , the

predicted coiled-coil region proximal to the protein-protein or protein-lipid interaction

domains appears to faciltate the tethering function.

Structural and biochemical analysis of additional Rab/effector complexes wil

provide information on which, if any, interaction determinants are conserved and which

are unique. By definition, effectors must recognize the active conformation of one or

both switch regions. The extent of the interaction epitope beyond the switch regions is

likely to vary considerably. Further attention must also be given to any dependence on

quaternary structure , including oligomeric state or heterocomplex formation , when

assessing requirements for Rab binding. The high proportion of protein complexes and

self associating proteins among known Rab effectors may be significant for presentation

of a functional interaction epitope or enhancement of afinity through avidity.

Currently the majority of published reports on Rab interactions test a small subset

of Rab GTPases for interaction with effector proteins, which are often identified in two-

hybrid screens. To avoid bias, known and putative Rab effectors should be

systematically tested for interaction with all members of the Rab GTPase family. 

understanding of functional Rab specificity requires an analysis of the entire spectrum of

Rab/effector interactions. This information must be combined with other data, such as 

vivo localization and characterization of additional domains within the effector to
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understand its role in membrane traffcking. In some cases, a systematic analysis of

partially characterized effector binding domains may reveal higher affinity interactions

with other Rab GTPases, which would suggest alternative functional hypotheses.

Strctural Mechanisms of Rab/GEF Interactions

The concept of a consensus GEF interaction epitope derived from known

GTPase/GEF structures provides a framework for the analysis of Rab/GEF interactions.

The consensus GEF interaction epitope is consistent with the limited available mutational

and biochemical data concerning Rab/GEF recognition. However, additional Rab/GEF

structural and biochemical data are necessary to identify determinants for recognition of

Rab family proteins and identify differences with other GTPase familes.

Of equal importance are recognition determinants in the exchange factor. 

previously discussed , the known exchange factors for Rab GTPases show limited

sequence similarity, making overall structural homology unlikely. This reasoning is

consistent with the apparent lack of structural homology among GEFs for the various

GTPase familes (114-117). The structure of the Rabex-5 HB-Vps9 tandem provides the

first insight into the interaction determinants of a highly specific Rab GEE The most

striking feature of the Vps9 domain is the critical stabilzing interaction with an N-

terminal helical bundle, which is not accurately represented in sequence homology

databases. Careful analysis of sequence conservation and predicted secondary structure

suggests that the helical bundle is present in other Vps9 domain proteins. This similarity

in primary and secondary structure should be confirmed by the characterization of
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additional Vps9 domains to determine whether the helical region is required for structural

stabilty and/or nucleotide exchange activity. The corresponding HB-Vps9 tandem of

RINI has already been expressed and exhibits high exchange activity for Rab5 (Anna

Delprato, personal communication.

The increased exchange activity of the Rabex-5 HB- V ps9 construct in comparison

to published reports for full-length Rabex-5 may be due to poor behavior of the full-

length protein or autoinhibitory effects. Our experience suggests that full-length Rabex-

purified from E. coli is poorly behaved and therefore may be misfolded. However, this

does not preclude the possibilty of an inhibitory domain within the full-length protein

that is not present in the HB-Vps9 domain construct. The full-length protein contains

additional recognizable domains outside of the HB-Vps9 region, including a C

finger, a coiled-coil region and a proline rich region, the functions of which are unknown.

Any of these domains may be capable of inhibiting Rabex-5 exchange activity in the

context of a "closed" conformation for the full-length protein. There is some evidence in

other V ps9 domain containing proteins that allosteric regulation may afect Rab exchange

activity. Ras associates with the Rab binding domain (RBD) juxtaposed to the Vps9

domain of RINI and has been shown to affect RlNI exchange activity (317 354). The

observed differences in exchange activity may also be a reflection of protein stabilty. 

has been shown that Rabex-5 forms an obligate heterodimer with Rabaptin- in vivo and

the activity in the complex is higher (53). It is uncertain whether Rabaptin-5 stabilizes

the full-length Rabex-5 protein or relieves an inhibitory state.
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The Rab family wide analysis of GEF specificity demonstrates that Rabex-

stimulates nucleotide exchange for members of subfamily V (Rab5 , Rab21 and Rab22).

An analysis of conserved residues within subfamily V that differ in other Rab subfamiles

identifies motifs in both switch I e AAELT ) and switch II ( SLAP ) as

putative specificity determinants. It is likely that the structural basis for highly selective

recognition of Rab GTPases by the HB-Vps9 tandem involves multiple determinants in

the switch regions. A complex between Rabex-5 and one of the Rab GTPases of

Subfamily V would provide the structural information necessary to identify these

determinants and allow for a re-evaluation of the consensus GEF interaction epitope to

include Rab/GEF determinants.

The range of interactions between Rab5 effectors and other Rab GTPases shows

how cross-talk between membrane compartments may occur. EEAl associates with both

Rab22 and Rab5 , whereas Rabenosyn-5 and Rabaptin-5 interact with Rab5 as well as

Rab4. Here we show that a Rab accessory factor, Rabex-5, can interact with both Rab21

and Rab22 in addition to Rab5. Rab22 localizes to EEA1-positive endosomes as well as

the TGN and is proposed to regulate transport between the TGN and endosomes

(285,343 344). This lends support to the interplay of vesicular trafficking steps that must

exist between the Golgi , early endosomes and recycling endosomes for proper protein

sorting to occur. Additional studies wil be required to characterize the Rab specificity of

the other proteins that contain Vps9 domains and determine whether these proteins and/or

the Rabaptin-5/Rabex-5 complex function as Rab21 and/or Rab22 GEFs in vivo.
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The critical point mutants identified in this study may also be useful for

understanding the role of Rabex-5 and other Vps9 domain containing proteins in vivo.

The significant number of proteins present in the human genome that contain a V ps9

domain underscores the importance of Rab5 activation and the necessity of multiple

pathways for regulating endocytic vesicle trafficking. Rab5 is essential for endocytosis

and inhibition of the Vps9 domain proteins Rabex-5 and RlNI perturb endosome fusion

and EGFR internalization, respectively. The yeasts S. cerevisiae and S. pombe both

contain two Vps9 domain proteins; however, only the S. cerevisiae Vps9 protein has been

characterized. Deletion of the other three Vps9 domain proteins should be analyzed for

differential stimulation of endocytosis. Other Vps9 domain proteins, such as RINI and

ALS2, also require further characterization to understand their potential roles in

endocytosis and disease. Recently, the ALS2 gene has been shown to interact with

mutant forms of the superoxide dismutase (SOD1) gene product through its RhoGEF

domain (355). Both proteins are associated with the onset of Amyotrophic Lateral

Sclerosis (ALS). The potential role for the Vps9 domain in ALS2 and its role in both

dominant and recessive forms of ALS have not been tested. A similar analysis for the

role of RlN family members in Ras mediated signaling is at its early stages.

Family-wide Rab GTPase Characterization

Using Rab5 mediated endocytic transport as a model system, we have gained

insight into the structural basis for the interaction of effectors and regulatory factors with

Rab GTPases. In addition, we have used structural and biochemical approaches to define
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how specific Rab5 interacting proteins function in the endocytic and recycling pathways.

Insights from the analysis of the Rab5 structure wil be investigated further in a family

wide structural analysis of Rab proteins. In addition, the development of high-throughput

approaches to characterize interactions with effectors and accessory factors was

motivated by concepts described in this work. This unbiased proteomic approach will

result in a more sophisticated structural and functional understanding of the role of Rab

family proteins in the cell.
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APPENDIX

Appendi 1. Structure-based sequence alignment of 20 Vps9 domain proteins.
Annotation and color coding are as described in the legend for Figure 29.

178



hR
ab

ex
5

zR
ab

ex
5

dR
ab

ex
5

cR
ab

ex
5

hA
L

S2
dA

L
S2

hR
IN

l
hR

IN
2

hR
IN

3
dR

IN
cR

IN
hQ

9P
20

7
dQ

9V
Z

08
cQ

9G
Y

H
7

hQ
9H

01
4

sc
V

ps
9

sc
M

uk
l

s
p
V
p
s
9
 
1

s
p
V
p
s
 
9

at
V

ps
9

s
o
l
 
a
c
e

c
o
n
 
9
5
%

c
o
n
 
8
0
%

c
o
n
 
6
0
%

hR
ab

ex
5

zR
ab

ex
5

dR
ab

ex
5

cR
ab

ex
5

hA
L

S2
dA

L
S2

hR
IN

l
hR

IN
2

hR
IN

3
dR

IN
cR

IN
hQ

9P
20

7
dQ

9V
Z

08
cQ

9G
Y

H
7

hQ
9H

01
4

sc
V

ps
9

sc
M

u.
k

s
p
V
p
s
 
9
 
1

sp
V

ps
9

at
V

ps
9

s
o
l
 
a
c
e

c
o
n
 
9
5
%

c
o
n
 
8
0
%

c
o
n
 
6
0
%

'''

al
B

I
aI

B
2

aH
B

3
aI

B
4

aV
l

14
0 

15
0 

16
0 

17
0 

18
0 

19
0 
20

0 
21

0 
22

0 
23

0 
24

0 
25

0 
26

0
I.

. 
1
 
.
.
 

S
 IE

T
D

R
V

S
K

E
F

IE
F

LK
 -

 -
 -

 -
 -

 -
 -

T
F

H
K

T
G

Q
E

 IY
K

Q
T

K
LF

LE
G

M
H

Y
K

 -
 -

--
 -

 R
D

LS
 IE

E
Q

S
E

C
A

Q
D

F
Y

H
N

V
A

E
R

M
Q

T
R

G
K

V
P

P
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

E
R

V
E

K
IM

D
Q

IE
K

Y
IM

T
R

L 
Y

K
Y

V
F

C
P

E
T

T
- 

- 
- 

- 
- 

- 
D

D
E

K
K

 D
LA

IQ
K

R
lR

A
R

W
- 

- 
- 

- 
- 

- 
- 

- 
V

T
 P

Q
M

L
C

V
PV

N
E

D
I-

S
A

E
C

D
R

IT
Q

H
F

ID
F

LK
 -

 -
 -

 -
 -

 -
- 

P
F

Q
R

P
G

Y
D

I F
K

Q
C

H
A

F
A

E
N

IA
H

K
 -

 -
 -

 -
 -

 K
W

G
C

E
D

LS
 D

S
V

Q
D

F
Y

Q
S

M
S

E
Y

LQ
T

N
F

K
G

S
 P

E
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

V
V

T
V

M
E

V
E

R
Y

V
M

G
R

LY
E

Q
LF

C
P

D
H

T
- 

--
 -

 -
 -

 D
D

E
K

K
D

LT
V

Q
K

R
lR

A
LH

W
- 

- 
- 

- 
- 
-
-
-
 
V
S
 IA

M
L

C
V

PL
D

E
Q

I-
D

P
T

E
G

Q
F

LL
Q

LR
Q

LR
- 

I P
D

D
G

K
R

K
LK

LE
 IQ

R
LD

S
D

IR
K

Y
M

N
G

N
G

G
K

 -
 -

 -
 --

- 
- 

- 

N
IN

E
LS

D
LV

Q
N

A
Y

T
K

V
S

D
IV

H
N

D
P

S
 F

E
 I 

A
T

N
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
E

D
R

D
SA

I 
D

FF
E

K
V

T
Q

N
H

K
FL

FS
 P

Y
 F

T
--

 -
 -

 -
 -

T
 D

E
D

S
 D

V
K

V
Q

K
R

IR
Q

LS
W

- 
- 

- 
- 

- 
- 

- 
- 

IT
A

K
H

LD
C

S
 I 

D
E

V
N

-

S
 P

D
S

LE
A

Q
Q

F
T

D
F

LV
A

- 
N

LS
T

G
M

A
Q

E
IA

R
S

V
K

A
 V

N
K

I S
E

M
R

- 
- 

- 
- 

- 
- 

- 
- 

--
- 

- 
- 

-M
S 

S 
D

D
M

SE
L

V
M

SY
Y

Q
Y

L
G

E
R

I 
G

G
H

SL
FD

S 
P

D
C

--
 -

 -
 -

 K
V

K
V

E
D

V
M

D
Q

V
E

K
Y

IS
T

F
C

Y
S

 I 
F

F
C

A
N

H
 --

- 
--

 -
 -

 E
E

E
V

A
D

M
S

LQ
D

R
IR

S
LH

W
--

 -
 -

 -
 -

 -
- 

V
T

A
G

F
LE

T
K

M
F

K
K

-
LS

R
S

Q
T

Q
T

LE
S

LE
F

I P
- 

- 
- 

- 
- 

-Q
H

V
G

A
F

S
V

E
K

Y
D

D
IR

K
Y

L 
I K

A
C

 D
T

P
LH

 P
- 

- 
- 

- 
- 

LG
R

LV
E

T
LV

A
V

Y
R

M
T

Y
V

G
V

G
A

N
R

R
- 

- 
- 

- 
- 

- 
- 

--
 -

- 
- 

--
 -

--
 L
Q
E
A
 
V
K
E
I
K
S
Y
L
K
R
I
 

FQ
L

V
R

FL
FP

E
--

 (
 6

2 
J 

- 
N

D
R

E
E

 D
IY

W
E

C
V

L
R

L
N

K
Q

PD
IA

L
L

G
 F

L
G

V
Q

R
K

FW
PA

T
L

S 
IL

T
S

T
T

S
A

V
LD

Q
V

P
S

F
G

M
- 

- 
- 

- 
- 

- 
- 

- 
A

LV
LT

E
Q

D
V

T
S

 IR
LY

LE
Q

A
F

K
D

R
H

H
 -

 -
 -

 -
 -

 L
 Y

V
LN

E
R

IA
N

C
F

H
Y

 S
Y
G
Y
W
K
V
K
P
T
 
P
I
L
-
 
-
 

- 
- 

- 
- 

- 
--

--
--

--
- 

A
K

Q
A

M
W

E
S 

I 
SR

R
IY

R
FV

R
K

FP
A

L
- 

(5
4 

J 
- 

A
E

K
LK

D
Q

E
LV

E
LM

G
H

E
S

F
--

 -
 -
-
-
-
-
 
L
H
N
V
M
L
D
P
K
F
-
 
-
 

- 
--

L
A

PE
R

Q
V

G
R

A
L

M
- 

- 
- 

--
- 

- 
- 

- 

-Q
D

R
H

T
A

A
G

Q
LV

Q
D

LL
T

Q
V

R
A

G
--

 -
 -

 -
 -

 -
 -

 P
E

P
Q

E
LQ

G
IR

Q
A

LS
R

A
LS

A
E

LG
P

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

E
K

LL
S

 P
K

R
L

E
H

V
L

E
K

SL
H

C
SV

L
K

PL
R

Pl
L

A
- 

- 
- 

R
L

R
R

R
L

A
A

D
G

SL
G

R
L

A
G

L
R

L
A

-Q
G

 P
G

A
FG

SH
L

SL
- 

-- 
- 

- 
--

M
T

PE
K

R
M

lA
E

L
S-

--
---

 -
--

- 

R
D

K
C

T
Y

F
G

C
LV

Q
D

Y
V

S
F

LQ
E

N
K

E
C

H
V

- 
- 

- 
S

S
T

D
M

LQ
T

IR
Q

F
M

T
Q

V
K

N
Y

LS
Q

S
S

E
LD

P
P

I -
 -

 -
 -

 -
 -

 -
 -

 E
S

LI
 P

E
D

Q
I D

V
V

LE
K

A
H

K
C

IL
K

P
LK

 -
 -

 -
 -

 -
 -

 -
 -

 -
 -

 -
 -

 -
G

H
V

E
A

M
K

D
F

H
M

A
D

G
S

--
 -

--
-W

K
Q

L
K

E
N

L
Q

L
V

R
Q

R
N

PQ
L

SN
N

R
K

L
Y

K
K

V
L

A
--

--
--

--
--

Q
D

K
G

S
Y

F
G

S
LV

Q
D

Y
K

V
Y

S
LE

M
M

Q
T

- 
- 

- 
S

S
T

E
M

LQ
E

IR
T

M
M

T
Q

LK
S

Y
LL

Q
S

T
E

LK
A

LV
D

P
- 

- 
- 

- 
- 

- 
-
A
L
H
S
E
E
E
L
E
A
l
V
E
S
A
L
Y
K
C
V
L
K
P
L
K
E
A
I
N
S
-
-
-
C
L
H
Q
 
I
 
H
S
K
D
G
S
L
Q
Q
L
K
E
N
Q
L
V
-
 

- 
- 

- 
- 

I L
A

T
T

T
T

D
LG

V
T

T
S

- 
- 

--
S
G
P
G
D
S
L
R
A
 
Y
T
L
Q
L
A
-
-
-
-
 
-
 

- 
- 

- 
- 

- Q
D

P
S

S
T

F
A

R
IE

N
F

IC
C

T
K

E
S

R
E

--
--

-A
A

P
Q

V
V

Q
F

M
S

G
M

K
Y

LV
K

H
G

E
G

K
F

H
A

LE
T

A
R

K
S

D
E

F
LN

LD
A

M
LE

T
V

M
H

Q
LV

V
LP

LR
E

H
L 

Y
G

- 
I 

FV
D

H
Y

Q
R

SE
D

I 
Q

L
L

A
Q

N
V

Y
A

C
- 

- 
- 

- 
- 

E
R

E
A

A
D

FG
IR

PT
V

T
- 

- 
E

K
IG

R
A

 V
Q

N
Y

V
E

E
L

A
Q

V
--

 -
 -

 -
 -

 -
 K

E
G

D
N

A
C

FG
L

T
L

R
Q

FV
A

C
T

K
D

T
K

E
--

--
-T

D
PA

 V
V

IR
N

R
Q

FI
N

G
M

K
Y

L
V

K
H

G
E

G
D

L
H

H
I 

I 
D

E
E

SS
R

L
N

SN
Q

IL
N

I 
D

A
 V

L
E

A
 V

L
H

K
L

L
L

R
E

V
K

PL
L

 Y
H

- 
--

 V
M

IK
E

H
SK

A
G

A
L

Q
L

I 
SQ

N
Q

G
V

- 
- 

- 
- 

- 
V

R
K

M
N

L
T

E
L

G
FS

N
PE

SL
 V

LQ
R

V
LR

D
K

E
V

A
N

R
Y

F
T

T
- 

- 
- 

- 
- 

V
C

V
R

L
L

E
SK

E
K

K
lR

E
FI

Q
D

FQ
K

L
T

A
A

D
D

--
- 

- 
K
T
A
Q
V
E
D
F
L
Q
F
L
 
Y
G
A
M
Q
D
V
I
W
Q
N
A
 
-
 
-
-
-

--
- 

--
 -

 -
 -

 -S
E

E
Q

L
Q

D
A

Q
L

A
IE

R
SV

M
R

I 
FK

L
FY

PN
Q

D
- 

- 
- 

- 
- 

-G
 D

 IL
R

D
Q

V
LH

E
H

IQ
R

LS
K

 -
 -

 -
 -

 -
 V

V
T

A
N

H
R

A
LQ

 I 
P

E
- 

- 
- 

G
E

A
R

S
S

Q
R

C
LL

Q
A

V
R

- 
- 

- 
- 

- 
- 

- 
-M

Y
LA

W
S

R
Q

Q
E

K
LE

Q
F

Q
A

E
F

A
Q

LR
- 

- 
- 

- 
--

- 
A

S
D

E
R

V
E

LT
E

E
F

V
S

LL
Q

E
LR

S
S

A
 -

 -
 -

 -
 -

 -
-

--
- 

D
LQ

D
E

W
Q

V
D

A
A

V
A

IE
R

M
LL

E
Q

M
Y

E
Q

V
M

F
P

N
E

D
- 

- 
- 

--
 -

 A
D

V
S

 R
D

E
V

LS
A

H
 I

G
K

L
Q

R
--

 -
 -

 -
 F

V
H

P
A

H
P

A
LC

 IA
Q

E
Y

 -
 

LT
E

Q
I L

V
D

F
LM

R
T

F
LE

- 
-T

G
F

N
N

K
H

T
V

G
K

T
Q

E
V

T
A

 V
LK

F
Y

D
E

F
K

Y
LR

A
Q

D
E

- 
- 

- 
- 

R
A

F
LK

N
LL

T
F

LR
D

R
LM

Q
N

V
D

W
N

F
A

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

-T
D

T
M

M
SR

A
T

T
IE

R
Y

V
I 

FA
 V
Y
D
N
A
F
Y
P
N
R
D
-
 
-
-
-
-
-
 

A
D

H
H

R
D

K
LL

R
G

T
IA

K
V

S
 D

- 
- 

- 
- 

- 
V

V
T

 P
V

N
D

F
LK

I P
E

H
--

 
D

P
F

S
LK

T
I E

D
V

R
F

LG
R

- 
- 

- 
- 

- 
- 

H
S

E
R

F
D

R
N

 IA
S

F
H

R
T

F
R

E
C

E
R

K
S

LR
H

H
 I 

- 
D

S
A

N
A

L 
Y

T
K

C
LQ

Q
LL

R
D

S
H

LK
M

LA
K

 --
--

 -
- 

- 
- 

- 

- 
- 

- 
- 

- 
- 

-Q
E

A
Q

M
N

L
M

K
Q

A
V

E
I 

Y
V

H
H

E
I 

Y
N

L
IF

K
Y

V
G

T
- 

- 
- 

- 
--

M
E

A
S

E
 D

A
A

F
N

K
IT

R
S

LQ
D

- 
- 

- 
- 

- 
- 

- 
- 

LQ
Q

K
D

I G
V

K
 -

 -
 --

--

D
K
G
D
E
E
P
F
Y
D
F
Q
I
 
F
I
K
Q
L
-
-
-
-
-
-
Q
T
 

P
G

A
D

P
LV

K
Y

T
K

S
F

LR
N

F
LA

Q
- 

--
 -

 -
 -

 -
 -

 -
 -

 R
L

L
W

T
V

SE
E

 I
K

L
IS

D
FI

Y
D

K
FT

L
 Y

E
PF

R
SL

- 
- 

- 
- 

- 
- 

- 
D

N
SK

M
A

K
E

G
M

E
K

L
IM

G
K

L
 Y

SR
C

FS
PS

L
Y

 -
 (

12
 J

 -
 K

D
L

T
N

D
D

T
L

L
E

K
IR

H
Y

R
F-

 -
 -

 --
 -

 -
 -

 I 
S

 P
IM

LD
I P

D
T

M
P

N
-

T
N

L
PP

E
L

SK
L

ID
I 

FI
D

D
L

K
Q

PK
Y

V
R

PL
SV

L
Q

L
SS

L
FQ

SF
Y

 I
K

FD
K

A
SF

Q
H

- 
( 

8 
4 

J 
- 

A
T

Q
M

L
SP

E
E

IK
K

Q
L

K
IN

E
L

N
 -

 -
 -

 -
 --

--
 -

--
 -

 -
 -

 -
 -

 -
 -

 N
M

K
IE

K
Y

M
E

LC
E

R
D

V
F

K
K

IL
IV

G
T

S
V

S
S

P
- 

(2
9 

J 
- 

N
K

LL
N

E
K

IL
C

LS
K

LS
T

M
- 

- 
- 

- 
- 

- 
N

K
IN

L
IK

FL
SL

N
N

G
--

--
SN

L
PT

T
V

Q
A

C
V

IQ
FI

SS
L

 V
S 

PV
H

PQ
L

L
S 

PE
E

L
A

FQ
N

FY
K

H
T

D
E

FI
A

ST
L

- 
(9

 J
 -

 N
Y
 
P
L
L
F
P
E
E
I
 
D

A
Q

K
K

Q
H

L
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

--
 -

 L
N

Q
K

D
E

W
M

D
Q

IE
D

IV
C

E
Y

L 
Y

D
R

I F
C

LS
T

 S
- 
--

 -
 -

 -
T

D
A

A
K

D
D

LL
K

K
F

IA
S

E
E

K
 -

 -
 -

- 
- 

- 
K

E
LI

N
C

I P
I P

D
D

E
- 

- 
--

Q
Q

E
IN

E
P

I F
D

F
H

M
F

LE
Q

LR
- 

- 
- 

- 
- 

-S
S

S
A

E
P

V
A

K
Y

LK
S

F
LS

E
F

T
K

R
R

W
T

- 
- 

- 
- 

- 
- 

V
N

Y
Q

V
K

LI
R

D
F

LK
F

IN
E

K
IE

Q
Y

E
P

W
A

S
G

S
 -

 -
 -

 -
 -

 -
 -

 -
 -

 -
Q
A
I
 
D
N
A
K
E
G
M
E
K
L
V
L
N
R
L
 
Y
T
S
L
F
S
P
E
 
I
A
-
 

( 
11

 J
 -

 D
D

V
E

E
 D

R
V

L
SE

K
M

L
FQ

W
- 

- 
- 

- 
--

- 
- 

I T
E

E
N

LD
IK

K
Q

--
--

M
E

N
T

D
V

V
S

G
LH

N
F

LS
K

 -
 -

 -
 -

 -
 -

 -
 -

- 
P

S
A

K
D

F
IK

S
 IK

S
F

IV
S

 I
L

N
T

A
PD

--
--

--
 P

E
K

D
C

D
A

 V
Q

D
FF

Y
K

M
SA

FR
A

H
PL

W
SG

C
S-

--
--

--
--

- 
D

D
E

LD
N

A
G

D
G

LE
K

Y
V

T
K

LF
P

R
V

F
A

S
N

T
- 

--
 -

 -
 -

 -
 E

 D
V

I S
 D

E
K

L
FQ

K
IS

L
V

Q
Q

F-
--

- 
- 

- 
- 

I 
SP

E
N

L
D

IQ
PT

- 
- 

--

m
: '

:
1
.
 
.
'
;
 

;j 

if 
lIi

t..
iE

i ;; 
-:

 !(
: l

!!
i .

'
lir

JI
_

...
..

t
.
.
.
 
.
h.

 .
hh

...
...

...
...

...
.. 

.
hp

.h
...

...
...

...
...

...
...

...
 .

ph
h.

...
...

...
...

...
...

...
...

...
...

 .
t
h
.
.
 
.
hE

t.h
ht

.h
h.

 .
hh

...
.. 

...
...

.. 
.

. .

h.
...

...
...

...
...

...
.. 

.h
...

...
...

.. 
. t

.
p
.
.
.
 
.

th
h.

...
...

...
...

 .
pt

hh
p.

hp
pa

ht
th

. t.
...

...
...

.t
.
.
 
.

hp
ph

h.
t
h
.
 
.h

h.
t..

...
...

...
...

...
...

 .
hp

ph
.

hE
ph

lh
ph

hh
. .

hh
...

.. 
..,

. .
tc

h.
p
D
.
 
.
1t

th
ht

t.t
...

...
.. 

.h
.
 
.

L
th

...
...

.
ps

ts
pp

st
pp

ht
pF

1t
...

...
.. 

.p
ht

sp
ph

sp
t1

cp
F

hp
ph

pc
ph

...
...

.. 
.s

t.h
cs

hp
ph

hp
ph

pt
hh

tp
pt

.h
...

...
...

...
.. 

.t
ph

cp
hh

ct
1E

+
hl

hp
p1

ap
.1

F
ts

st
s 

...
. .

p-
tp

cD
ttL

pc
ph

pp
hp

h.
...

...
 .

hs
sp

tL
s1

s.

p.
...

aV
2

aV
3

aV
4

aV
6

aV
5

D
P

re
di

ct
ed

 H
el

ix

D
P
r
e
d
i
c
t
e
d
 
S
t
r
a
n
d

D
pF

A
M

 h
om

ol
og

y

27
0 

28
0 

29
0 

30
0 
31

0 
32

0 
33

0 
34

0 
35

0 
36

0 
37

0 
38

0

.. 

I.
. 

...
...

..1
 

..1
 I.

, 1
 
-
 
1
.
.
.
_
.

..1
 

- 
- 

- 
- 

- 
- 

- 
- 

PE
V

S 
D

M
V

IT
D

I 
IE

M
D

S
K

R
V

- 
- 

P
R

D
K

LA
C

 IT
K

C
S

K
H

I F
N

A
I K

I T
K

N
E

P
 A

 -
 -

 -
 -

 -
 -

 S
A
D
D
F
L
P
T
L
I
 
Y
 
I
V
L
K
G
N
P
P
R
L
Q
S
N
I
Q
Y
 
I
T
R
F
C
N
-
 
P
S
R
L
M
T
-
-
 
-
G
E
 
D
G
Y
Y
F
T
N
L
C
C
A
 

V
A

FI
E

K
L

D
A

Q
SL

N
 L

SQ
E

D
FD

R
Y

M
SG

--
- 

- 
- 

--
 -

 PK
V

S 
D

SV
E

R
A

T
D

L
 I

N
L

D
SK

K
V

- 
- 

PK
E

K
L

A
C

V
T

R
C

SK
H

IL
T

A
I 
Q

G
SK

K
A

- 
- 

- 
- 

- 
-S

A
D

D
FL

PA
L

V
Y

 I
 I

L
K

A
N

PP
R

L
H

SN
I 

Q
Y

IT
R

Y
C

N
- 

PS
R

L
M

S-
--

G
E

D
G

Y
Y

FT
N

L
C

C
A

 V
S 

FI
E

K
L

D
A

Q
SL

N
 L

S 
PE

D
FE

R
Y

M
SG

- 
- 

--
 -

 -
 -

 -
 S

E
A

R
D

LV
Y

N
A

IS
E

LV
G

I D
S

 Y
Y

 S
--

 P
Q

E
K

LQ
C

T
W

R
C

C
R

H
I F

E
LL

K
R

A
T

G
G

 P
A

- 
- 

- 
- 

- 
- 

SA
D

D
FL

PA
L

I 
FV

L
K

A
PV

R
L

H
SN

IN
FV

T
R

FT
N

- 
A

SR
L

M
S-

- 
-G

E
SG

Y
Y

FT
N

L
C

SA
IA

FI
E

N
L

N
G

E
SL

G
V

SS
E

E
FE

A
L

M
SG

- 
- 

- 
- 

- 
- 

- 
- Q

T
V

R
D

K
I 
D
E
A
I
S
E
L
I
E
I
N
A
K
S
-
-
 
A
F
E
K
L
D
C
L
T
K
S
C
K
A
I
 
F
E
A
L
K
E
S
A
S
N
I
 

I -
 (

49
 J

 -
S

A
D

E
F

LP
T

LI
Y

V
LF

R
G

N
P

P
L 

I Q
SN

V
FI

 S
R

FA
I 

- 
PA

R
L

M
S-

 -
 -

G
E

A
A

Y
FF

.N
L

SC
A

L
E

FA
R

N
M

N
H

E
SL

Q
M

E
K

SE
FE

A
 Y

T
 S

G

G
E

S
K

K
V

LP
T

T
K

D
A

C
F

A
S

A
 V

E
C

LQ
Q

I S
T

T
F

T
- 

- 
P

S
 D

K
LK

V
I Q

Q
T

F
E

E
 I 

S
Q

S
V

LA
S

LH
E

D
F

LW
--

 -
 -

S
M

D
D

LF
P

V
F

L 
Y

V
L

R
A

IR
N

L
G

SE
V

H
L

IE
D

L
M

D
- 

PY
 -

 L
Q

H
 -

 -
 -

G
E

Q
G

IM
FT

T
L

K
A

C
Y

Y
Q

IQ
R

E
K

L
N

- 
- 

- 
- 

- 
- 

- 
- 

V
E

S
V

Q
T

LK
E

LQ
E

K
F

S
--

 -
 -

 -
 -

 -
 -

 -
 P

Q
D

M
L

T
V

IQ
R

ST
Q

L
L

T
E

A
Y

E
H

A
A

A
Q

L
--

 -
 N

A
D

N
M

I 
PL

 T
M

L
T

M
L

R
A

 V
P

H
LG

A
E

LA
LD

D
LT

G
G

P
N

- 
F

Q
A

E
M

N
G

M
A

G
Y

C
Y

T
T

LK
A

Y
E

H
V

T
S

R
A

LQ
K

 I 

- 
--

--
- --

 -
 P

S
 P

V
E

LE
Q

V
R

Q
K

LL
Q

LL
R

T
Y

S
- 

- 
P

S
A

Q
V

K
R

LL
Q

A
C

K
LL

 Y
M

A
R

T
Q

E
G

E
G

A
 -

 -
 -

 -
 -

 -
 G

A
D

E
F

LP
LL

S
LV

LA
H

C
D

LP
E

LL
LE

A
E

Y
M

S
E

LL
E

- 
P

S
- 

LL
 T

- 
- 

-G
E

G
G

Y
Y

LT
S

LS
A

S
LA

LL
S

G
LG

Q
A

H
T

L 
P

LS
V

Q
E

LR
R

S
LS

 S
o
l
v
e
n
t
 
A
c
c
e
s
s
i
b
i
l
t

E
L

G
V

F-
--

 A
P

T
P

D
F

V
D

V
E

K
IK

V
K

F
M

T
M

Q
K

M
Y

S
P

E
K

K
V

LL
LR

V
C

K
LI

 Y
T

V
M

N
N

S
G

R
M

Y
 -

 -
--

 -
 -

G
A

D
D

F
LP

V
LT

Y
V

IA
Q

C
D

M
LE

LD
T

E
IE

Y
M

M
LL

D
- 

ps
- 

LL
H

 -
 -

 -
 G

E
G

G
Y

Y
LT

S
A

Y
G

A
LS

L 
I K

N
F

Q
E

E
Q

A
A

R
LL

S
S

E
T

R
D

T
LR

- 
- 

- 
- 

- 
- 

- 
- 

V
P

E
V

P
M

M
K

IL
Q

K
F

T
S

M
H

K
A

 Y
 S

--
 P

E
K

K
I S

 IL
LK

T
C

K
LI

Y
D

S
M

A
LG

N
P

G
K

P
Y

 -
 -

 -
--

G
A

D
D

F
LP

V
LM

Y
V

LA
R

S
N

LT
E

M
LL

N
V

Y
M

M
LM

D
- 

P
A

- 
LQ

L-
--

G
E

G
S

Y
Y

LT
T

T
Y

G
A

LE
H

IK
S

Y
 D

K
 IT

V
T

R
Q

LS
V

E
V

Q
D

S
 I 

H
 

. -

Ji
l

--
- 

- 
- 

- 
- 

- 

PP
SQ

A
A

R
L

IA
N

L
L

W
R

L
Q

E
A

E
L

- 
- 

PL
D

K
L

E
L

FL
C

V
I 

ST
V

FD
A

T
G

C
PR

G
Q

Q
L

- 
- 

- 
- 

- 
-G

A
D

D
FL

PV
L

V
Y

V
V

A
K

C
G

FV
G

A
E

 I
 E

A
E

F
M

G
LL

Q
- 

P
T

- 
LL

N
--

-G
E

P
G

Y
Y

LT
A

LC
S

A
 V

Q
V

LK
T

F
M

S
E

G
E

S
G

S
G

S
LD

W
R

S
S

C
 E
 
d

' e
d

- 
--

--
--

-T
PS

SS
lM

E
Q

V
K

L
L

M
R

Q
N

H
Y

S-
- 

PM
K

L
E

N
L

M
K

V
G

L
V

L
G

C
Q

V
N

N
G

N
E

N
E

- 
(1

4)
 -

 P
G

D
D

L
V

R
W

FV
Y

IL
SR

T
ST

V
G

C
E

V
E

A
W

Y
M

W
E

L
L

P-
Q

P
- 

IV
T

Q
--

S
D

A
S

Y
Y

LT
S

LW
S

A
V

H
V

LK
S

T
E

S
 IR

R
LC

E
N

D
Q

R
V

IV
S

H
D

 
xp

os
e 

- 
- 

- 
- 

- 
--

 V
Y

L
R

E
A

PW
PS

A
Q

SE
IR

T
 I

SA
Y

K
T

--
 P

R
D

K
V

Q
C

IL
R

M
C

ST
 I

M
N

L
L

SL
A

E
D

SV
P-

 -
 -

 -
 -

G
A

D
D

FV
PV

L
V

FV
L

lK
A

N
PP

C
L

L
ST

V
Q

Y
IS

SF
Y

A
-S

C
- 

- 
L
S
-
-
 
-
G
E
E
S
Y
W
W
Q
F
T
A
A
 
V
E
F
I
K
T
I
 
D
D
R
K
 
.

. .

- 
- 

- 
- 

- 
- 

- 
- 

- 
LG

E
A

P
W

T
F

A
Q

Q
Q

LC
H

M
A

Y
K

T
- 

- 
P

R
E

K
LQ

C
I I

N
C

I S
S

 IM
S

LL
R

M
S

S
G

R
V

P
- 

- 
- 

- 
- 

- 
A

A
D

D
LL

P
V

L 
I Y

V
V

lM
A

PP
Y

L
L

ST
V

E
Y

I 
SC

FL
G

- 
K

K
 -

 -
 L

E
- 

- 
-G

E
D

E
FY

W
T

L
FG

SV
V

FI
K

T
M

D
Y

 L
 D

 P
hy

sl
O

-C
he

lD
ca

l S
llD

la
nt

y

--
--

--
--

 L
H

G
E

A
PW

PS
A

Q
A

L
SM

L
D

IY
V

T
--

A
Q

D
K

L
N

C
V

V
C

C
D

V
IN

N
L

V
A

L
SS

K
N

A
V

A
--

--
-S

A
D

D
L

T
PV

L
V

FV
I 
lK

A
PR

A
L

L
SN

V
Q

FV
T

FA
G

- 
D

R
- 

IE
S-

--
G

R
D

A
Y

Y
W

V
FK

SA
V

E
Y

IK
T

IL
 

I, 
L,

 V

--
--

--
--

 P
E
F
S
F
N
I
P
R
A
L
A
Q
L
N
K
C
T
S
-
-
 
P
Q
Q
K
L
V
C
L
R
K
Q
L
I
T
Q
S
P
S
Q
R
V
N
L
E
T
M
-
-
-
-
-
C
A
D
D
L
L
S
V
L
L
Y
L
L
V
K
T
E
I
P
N
W
L
S
Y
I
K
N
F
R
F
-
S
S
-
 
L
A
K
-
-

- 
D

E
LG

Y
C

LT
S

F
E

A
A

IE
Y

IR
Q

G
S

LS
A

K
P

P
E

S
E

G
F

G
D

R
LF

L 
a 

F
, H

, W
, Y

-
-
-
-
-
-
-
-
A
R
N
K
F
V
H
L
A
S
K
E
L
G
K
I
N
R
F
K
S
-
-
P
R
D
K
M
C
V
L
N
A
S
K
V
I
F
G
L
L
K
H
T
K
L
E
Q
N
-
-
-
-
-
-
G
A
D
S
F
I
P
V
L
I
Y
C
I
L
K
G
Q
V
R
Y
L
V
S
N
V
N
Y
I
E
R
F
R
S
-
P
D
-
F
I
R
-
-
-
G
E
E
E
Y
Y
L
S
S
L
Q
A
L
N
F
I
M
S
L
T
E
R
S
L
T
I
D
D
H
E
D
F
E
E
A
Y
Q
 
h
 

A
, C

, F
, G

, H
, I

, K
, L

, M
, R

, T
, V

, W
, 

- 
- 

- 
- 

- 
- 

- 
- 

I D
P

E
P

K
F

E
E

IK
D

IL
 Y

E
F

T
Y

 H
S 

I 
S-

 P
C

E
K

lK
A

L
L

K
L

H
E

IM
T

Y
SQ

E
M

- 
- 

- 
- 

- 

--
 -

--
- 

-S
N

D
D

Y
L

SL
L

IY
Y

I 
IT

IV
PR

D
I 

FL
N

A
E

FI
R

L
FR

Y
 -

 K
K
 
-
 
K
L
V
-
 
-
 
-
 
E
T
E
S
F
A
L
T
N
L
E
A
A
V
F
V
G
L
T
K
N
D
F
S
N
E
L
Q
D
K
L
T
V
N
E
S
 
-
 

D
, E

- 
- 

- 
- 

- 
- 

- 
- 

K
LT

N
R

LH
E

V
S

E
A

F
F

A
LD

E
Q

H
T

- 
- 

- 
P

R
S

K
IN

T
F

M
T

V
N

S
S

 I 
LN

A
S

Q
LP

Q
E

E
L-

 -
 -

 -
 -

 -
 -

 N
A

D
S

LL
N

LT
 IY

C
I L

C
Y

 P
G

F
H

LI
 S

H
LN

F
V

LR
F

R
N

- 
A

D
- 

FL
S-

- 
-G

E
Q

R
Y

C
L

T
T

FE
A

A
T

FI
L

R
A

C
PN

L
L

 T
Q

SS
 I

 Q
P

S
D

D
P

LS
 +

 
H

, K
, R

- 
--

--
--

- 

K
SS

SK
FF

K
L

A
D

E
L

R
R

IN
D

Y
H

A
--

 P
R

D
K

I 
IC

L
L

N
C

C
K

V
IF

SY
L

R
N

K
E

E
--

--
--

-S
A

D
M

FV
PI

L
IF

V
L

Q
A

R
PA

H
L

V
SN

IQ
Y

IQ
R

FR
S-

 P
E

- 
K

LT
--

-G
E

V
M

Y
Y

LS
T

LM
G

A
M

S
F

IE
T

LD
C

S
S

LT
IT

E
E

E
F

N
A

Q
IE

K
 c

 
D

, E
, H

, K
, R

-
-
-
-
-
 
-
-
-
 F

Q
N

Q
T

S
W

LL
A

Q
K

E
LQ

K
IN

M
Y

N
A

- 
- 

P
R

D
K

LM
C

I L
R

C
C

K
V

IN
N

LL
LN

A
S

 IA
S

N
Q

N
E

P
- 

-G
A

D
Q

FL
PV

L
I 

Y
V

T
 lK

A
N

PP
Q

FH
SN

L
L

 Y
 I

Q
R

Y
R

R
- Q

S-
 K

L
V

- 
- 

-G
E

A
G

Y
L

FT
N

IL
SA

E
SF

I 
SN

 I
 D

A
K

S
LS

M
D

E
A

D
F

E
T

K
M

S
 0

 
S

, T

- 
.;-

 

E
K

'i 
.

. '

_;
.\A

lij
; S

 :: 
...

...
...

...
. .

h.
...

. .
h.

...
...

.. 
.

pp
l.h

h.

p
.
 
.

l..
...

...
...

...
.. 

ss
D

ph
hs

hh
hh

hh
hp

h.
.. 

.h
. .

ph
.h

h.
th

h.
...

...
...

 .
sp

.t
ah

hs
th

.s
sh

.h
l
.
t
h
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 
u
 

. .
 . 

. .
 . 

. .
 . 

. .

pt
.h

. .
pp

1h
th

p.
hh

.. 
. p

pc
K

l.s
1h

ps
sp

h1
hp

hh
t.s

. t
t. 

. .
...

 u
A

D
sh

1P
hL

1a
llh

ps
s.

. t
ho

 s
p1

pa
h.

ph
ht

.s
p.

hh
p.

 . 
.G

E
tu

Y
hh

T
sh

.u
A

1t
h1

pp
hp

. t
ph

. .
 . 

. .
 . 

. .
 . 

. .
 ..

 
A

, C
, D

, G
,N

, P
, S

,T
, V

. .
 ..

 . 
. .

 .

h
p
s
s
s
h
h
c
p
A
p
p
c
L
t
p
1
s
p
t
p
s
.
 
.
 
P
P
-
K
L
p
s
1
h
+
s
s
c
h
l
h
s
s
1
p
t
s
p
t
p
t
s
 
.
 
.
 
.
 
.
 
uA

D
D

FL
P1

L
1Y

V
11

+
us

5s
pL

hS
s1

pY
1p

ca
t5

. 5
5 

.1
hs

. .
 .

G
E

su
Y

Y
hT

sL
pu

A
1p

al
cs

hs
tp

ph
s 

.p
. t

p.
 . 

t. 
. .

 t 
C

, D
, E

, G
, H

, K
, N

, Q
, R

, S
,


	Title Page
	Copyright
	Approval Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter I: Introduction
	Chapter II: Structural Plasticity of an...
	Chapter III: Multivalent Endosome Targeting...
	Chapter IV: Determinants of Rab-GEF Recognition...
	Chapter V: Discussion
	Appendix



