May 20th, 12:30 PM

Interactions of Carbohydrate-conjugated Nanoparticles with Mycobacterium Smegmatis

Kalana W. Jayawardana
University of Massachusetts Lowell

H. Surangi N. Jayawardena
University of Massachusetts Lowell

Thareendra De Zoysa
University of Massachusetts Lowell

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Bacterial Infections and Mycoses Commons, Chemical and Pharmacologic Phenomena Commons, Medicinal-Pharmaceutical Chemistry Commons, Nanomedicine Commons, and the Translational Medical Research Commons

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Kalana W. Jayawardana, H. Surangi N. Jayawardena, Thareendra De Zoysa, and Mingdi Yan

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2014/posters/51
Interactions of carbohydrate-conjugated nanoparticles with *Mycobacterium smegmatis*

K. W. Jayawardana, H. S. N Jayawardena, Thareendra De Zoysa, Mingdi Yan*

Department of Chemistry, University of Massachusetts Lowell
To whom correspondence should be addressed. Fax: (978)-334-33013; Tel: (978)-334-3647; E-mail: mingdi_yan@uml.edu

ABSTRACT: *Mycobacterium smegmatis* is a non-pathogenic microorganism and has been widely used as a model organism to study infections caused by *M. tuberculosis* and other mycobacterial pathogens. We report that nanoparticles conjugated with selected carbohydrate show a striking increase in the surface adherence by *M. smegmatis*. This applies to silica nanoparticles and magnetic nanoparticles ranging from 100 nm to 5 nm. Under the same experimental conditions, minimum adhesion was observed for unfunctionalized nanoparticles. The synthesis and characterization of the glyconanoparticles will be presented. The finding is applied to imaging *M. smegmatis* infected lung epithelial cells, and the results will be discussed.