May 20th, 12:30 PM

Enhancing Antibiotic Activity Using Nanomaterial-Antibiotic Conjugates

H. Surangi N. Jayawardena
University of Massachusetts Lowell

Thareendra De Zoysa
University of Massachusetts Lowell

Kalana W. Jayawardana
University of Massachusetts Lowell

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the *Bacterial Infections and Mycoses Commons, Chemical and Pharmacologic Phenomena Commons, Medicinal-Pharmaceutical Chemistry Commons, Nanomedicine Commons,* and the *Translational Medical Research Commons*

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
H. Surangi N. Jayawardena, Thareendra De Zoysa, Kalana W. Jayawardana, Scott T. Boiko, and Mingdi Yan

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2014/posters/50
Enhancing Antibiotic Activity Using Nanomaterial-Antibiotic Conjugates

H. Surangi N. Jayawardena, Thareendra De Zoysa, Kalana W. Jayawardana, Scott T. Boiko, Mingdi Yan*

Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854

To whom correspondence should be addressed. Fax: (978)-334-33013; Tel: (978)-334-3647; E-mail: mingdi_yan@uml.edu

Abstract

We demonstrate that streptomycin conjugated on silica nanoparticles (SNP-Str) can be used to effectively target streptomycin-resistant Escherichia coli (E. coli) bacteria by lowering the minimum inhibitory concentration (MIC) of streptomycin up to 2 log folds. Silica nanoparticles were synthesized with an average diameter of 80, 50 and 30 nm, respectively. Streptomycin was then covalently conjugated to SNP using efficient photocoupling chemistry. The MIC for free streptomycin sulfate was recorded as a high 2.0 mg/mL for an engineered Str' mutant E. coli ORN 208. Conjugating the streptomycin to SNP resulted in the decrease in MIC to 161 μg/mL, 63 μg/mL, and 19 μg/mL for SNP of 80, 50 and 30 nm, respectively. In this poster, the synthesis, characterization, and evaluation of SNP-Str will be presented and discussed.