Mice Deficient in SFRP1 Exhibit Increased Adiposity, Dysregulated Glucose Metabolism

Lotfi M. Bassa
University of Massachusetts Amherst

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biochemistry Commons, Cellular and Molecular Physiology Commons, and the Translational Medical Research Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
MICE DEFICIENT IN SFRP1 EXHIBIT INCREASED ADIPOSITY, DYSREGULATED GLUCOSE METABOLISM.

Lotfi M. Bassa, Kelly J. Gauger, Elizabeth M. Henchey, Melissa Brown, and Sallie S. Schneider

Department of Veterinary and Animal Science, University of Massachusetts Amherst. Pioneer Valley Life Science Institute, Springfield, MA

Contact Info: lbassa@cns.umass.edu, Sallie.Schneider@bhs.org

The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1), is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain and glucose homeostasis in mice in response to diet induced obesity (DIO). Sfrp1−/− mice fed a high fat diet (HFD) exhibited an increase in body mass accompanied by increases in body fat percentage, visceral WAT mass, and adipocyte size. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated, and glucose transporters are repressed in Sfrp1+/− mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1+/− mice. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.