May 20th, 4:00 PM

Somatosensory Impairment and Balance Dysfunction in Multiple Sclerosis

Stephanie Jones
University of Massachusetts Amherst

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Biomedical Devices and Instrumentation Commons, Biotechnology Commons, Motor Control Commons, Musculoskeletal Diseases Commons, Somatic Bodywork and Related Therapeutic Practices Commons, and the Translational Medical Research Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

http://escholarship.umassmed.edu/cts_retreat/2014/presentations/11

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Somatosensory Impairment and Balance Dysfunction in Multiple Sclerosis

Stephanie Jones, PhD
MS Research Group
Sensory-Motor Control Laboratory
Department of Kinesiology
Multiple Sclerosis: Progressive Mobility Impairment

80% will develop progressive form of MS within 20 years of Dx
<table>
<thead>
<tr>
<th>Symptom</th>
<th>% occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>83.1%</td>
</tr>
<tr>
<td>Walking difficulties</td>
<td>67.2%</td>
</tr>
<tr>
<td>Stiffness and spasms</td>
<td>63.1%</td>
</tr>
<tr>
<td>Cognitive problems (memory)</td>
<td>55.8%</td>
</tr>
<tr>
<td>Bladder problems</td>
<td>55.8%</td>
</tr>
<tr>
<td>Pain</td>
<td>54.3%</td>
</tr>
<tr>
<td>Emotional and mood problems</td>
<td>37.5%</td>
</tr>
<tr>
<td>Vision problems</td>
<td>37.4%</td>
</tr>
<tr>
<td>Dizziness and vertigo</td>
<td>36.2%</td>
</tr>
<tr>
<td>Bowel problems</td>
<td>34.5%</td>
</tr>
</tbody>
</table>

Contributors? Can we intervene to maintain/improve mobility?
Slower preferred speed

Shorter stride length

Wider stride width

Longer double support time

The Normal Gait Cycle, adapted from Sutherland et al., 1994

(Benedetti 1999; Martin 2006; Kelleher 2010; Remelius 2012)

Adaptations to increase stability ????
Impaired Postural Control in People with MS: Clinical Balance Tests

- ↓ performance on timed balance tasks
 - altered base of support configurations

(Frzovic 2000; Soyuer 2006)

Standing
Stride Stance
Tandem Stance
Single Leg Stance

10 cm
Impaired Postural Control in People with MS: Posturography

• \(\uparrow\) Center of Pressure (COP) and trunk sway
• \(\uparrow\) COP velocity during standing

- worsened with increased task difficulty
 - BOS restrictions
 - self-generated perturbations (Van Emmerik 2010)
 - dual task (Boes 2012; Negahban 2011)
 - altered sensory conditions (Findling 2011; Porosinksa 2010; Spain 2012; Fjeldstad 2009; Cattaneo 2009)

Consistent with decreased stability
Impaired Postural Control in People with MS: Posturography

- Sensory Organization Test
 - Manipulate sensory conditions
 - Understand contribution of different sensory modalities

Eyes Open Eyes Closed Surround Moves

- SOT 1
- SOT 2
- SOT 3

Sway Referenced Fixed Surface

- SOT 4
- SOT 5
- SOT 6

- Vision
- Vestibular

Somatosensation

Center of Pressure
Impaired Postural Control in People with MS: Posturography

Tasks that rely on somatosensory greatly impacted in MS
(Fjeldstad 2009)

Sway Referenced
Fixed Surface
SOT 1
SOT 4

Eyes Open
Eyes Closed
Surround Moves
SOT 2
SOT 3
SOT 5
SOT 6

Somatosensation

Center of Pressure
Impaired Postural Control in People with MS: Postural Responses

Automatic postural responses

70-100ms latency
A range of strategies can be used depending on many factors

- Environmental context, constraints/impairments, behavioural goals

Initiated by feedback from the Somatosensory System
Impaired Postural Control in People with MS: Postural Responses

- Significantly delayed automatic postural responses

(Cameron et al., 2008)
Impaired Postural Control in People with MS: Postural Responses

- Reduced reactive scaling but enhanced predictive scaling

 (Cameron et al., 2008)

(A) Predictive Scaling

↓ ability to predictively scale

↑ ability to predictively scale

Increasing Perturbation Size
Impaired Postural Control in People with MS: Postural Responses

- Reduced reactive scaling but enhanced predictive scaling

 \[\text{(Cameron et al., 2008)} \]

\[\text{Appropriate timing and scaling of postural responses thought to depend on proprioceptive feedback} \]

\[\text{(Stapley 2002)} \]

\[\text{Suggests somatosensory rather than cerebellar impairment} \]
Detection of Instability

- Somatosensory
 - Impaired Cutaneous Sensation
 - Impaired Proprioception

- Sensory Contributions
 - Visual
 - Blurred vision
 - Double vision
 - Vestibular
 - Vertigo

- Motor Contributions
 - Reduced Strength Due to Reduced Central Activation?
 - Increased Strength Asymmetry

- Impaired Postural Control & Mobility

- Symptomatic Fatigue
 - Increased Symptomatic Fatigue
Somatosensory loss and balance in MS

- Impaired sensation explained variance in single leg stance time

 (Citaker et al., 2011)
Novel Functional Assessment of Cutaneous Sensation

- Traditional sensation testing performed in supine
 - Unloaded

Are sensory thresholds the same in functional (loaded) positions?

Tactors Embedded in Shoes
- Detect vibration thresholds while standing
Novel Functional Assessment of Cutaneous Sensation

- Vibration threshold increased with increasing load

On-going Project: Will these thresholds differ in those with MS?
Enhancement of Cutaneous Sensation in MS

- Direct manipulation of cutaneous sensation to impact balance

Use tactors to enhance sensation

Threshold
Signal + Noise (too Low)

Increase likelihood of detecting signal

Demonstrated increases in sensation and reduced sway in older adults, stroke, diabetic neuropathy
Improvement of Balance using Stochastic Resonance (SR)

- Reduced COP velocity may indicate greater stability

Potential use as an ambulatory aid? Increase mobility ??

Average COP Velocity - SR Effects

![Graph showing the effect of SR on COP velocity over time.](image-url)
Improve detection of instability?

Future Work - SR to improve mobility??
Thank you!

UMass Motor Control Lab Website:
http://www.umass.edu/motorcontrol/

National MS Society Website:
http://www.nationalmssociety.org