
EBP50T7-Kv1.5

T7-Kv1.5-ETDL EBP50

d21/M6/ t5
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Figure 33 - Kv1.5 co-localizes with EBP50 at SC tips

SCs were transfected with T7-tagged-Kv1.5 (A) and immunostained for endogenous

EBP50 (B).  At d21/M6/t5, co-localization was evident at the SC distal tip (composite C,

arrowheads) and appeared to be, at least partially, dependent upon the PDZ-binding motif

(-ETDL) of Kv1.5.  Transfected Kv1.5-ETDL (D) resulted in diminished detectable

Kv1.5 at the EBP50-reactive (E) SC tip (composite F, arrows).  Scale bar=10 µm.
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acid sequence of Kv1.5 (–ETDL) closely approximates one derived consensus sequence

for binding to EBP50’s PDZ domains (-D-S/T-X-L) (Wang et al., 1998).  Further, in

support of this proposed PDZ-mediated interaction, removal of either the PDZ domains

of EBP50 or the –ETDL PDZ-binding sequence of Kv1.5, specifically abrogates their co-

localization in SCs (Figs. 34, 35).

These data and our preliminary biochemical examination (unpublished data, B.

Walker, Lambert Lab) indicate that EBP50 generally may serve as a scaffold for the

linkage of Kv1.5 to cytoskeletal components.  This link could be indispensable for the

appropriate electrical responsiveness of mature myelinated nerves. Our data implicate

Kv1.5 as being resident at the distal tip of a retracting SC process rather than in a static

structure, as defined by EBP50 enrichment being linked to process instability.  How

Kv1.5 functions in the morphologic plasticity exhibited by SCs remains to be determined,

but it has been shown that Kv1.1 and 1.5 over-expression in intestinal epithelial cells

promotes membrane hyperpolarization and a 4-fold increase in cellular migration rates

(Rao et al., 2002).  Perhaps then, Kv1.5 is promoting enhanced motility of the SC process

with its focal concentration specifically residing at the distal tip of the cell.

Impairing the ionic activity of Kv1.5 by introducing specific inhibitors of this

channel would allow us to test this hypothesis.  The pharmacologic agent, tyrphostin AG-

1478, acts as a potent protein tyrosine kinase inhibitor and rapidly, reversibly inhibits

Kv1.5 currents in a concentration-dependent manner (Choi et al., 2002).  4-

aminopyridine also inhibits Kv1.5.  This inhibition is pulse-frequency-dependent and is

associated with a positive shift in activation voltage dependence (Kerr et al., 2001).

Treating the explant cultures with these compounds may provide insight as to whether
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Figure 34 - Kv1.5 localization is dependent upon its –ETDL motif and the PDZ-binding

domain of EBP50

SCs were transfected with variants of Kv1.5 and EBP50 to address the domain

requirements for their co-localization.  Full length T7-Kv1.5 co-localized with full length

EBP50-GFP (A-C) at SC distal tips.  The co-localization of these two constructs was

reciprocally dependent upon the presence of the PDZ binding motif of Kv1.5 (-ETDL)

(D-F) and the PDZ domains of EBP50 (G-I).  Arrowheads denote SC caps.  Scale

bar=10µm.
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Figure 35 – Quantification of Kv1.5 cap localization

A) Quantitative assessment of Kv1.5-enriched, EBP50-positve SC caps in DRG explant

cultures.  The basal level of Kv1.5 transfected SCs with EBP50-positive caps (detected

by either EBP50-GFP or EBP50 immunoreactivity) was determined examining Kv1.5

transfected cultures under standard conditions and set at 1=0.66%.  This minimal

percentage was further reduced by the introduction of the Kv1.5 variant lacking its

COOH-terminal PDZ binding motif (-ETDL).  Upon the induction of myelination, the

percentage of Kv1.5/EBP50-reactive caps increased 6.6-fold, which was dependent upon

the ability of Kv1.5 to interact with EBP50.  B) Presented is a quantitative analysis of the

PDZ-mediated dependence of the co-localization of Kv1.5 and EBP50.  Using EBP50-

GFP enrichment at the SC distal tip as the normalizing indicator of cap formation, the

percentage of Kv1.5/EBP50 co-localization was determined.  Assuming the maximal

number of caps is detectable in EBP50-GFP transfections and taking this value to

represent 100%, which itself in these studies occurred in 12.0±0.1% of transfected cells,

48.9% of caps displayed co-localization of T7-Kv1.5 and EBP50-GFP.  This was reduced

to 28.3% by removing the PDZ binding domain of EBP50 and to 14.6% by removing the

PDZ-binding capability of Kv1.5.  The lowest percentage of co-localization (13.1%) was

seen with the co-transfection of the two mutually PDZ interaction deficient protein

variants (EBP50-PDZ1+2-GFP and T7-Kv1.5-ETDL).
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Kv1.5 activity is required in promoting SC migration.  It also may be helpful to introduce

these effectors in the presence of SCs transfected with EBP50-GFP to specifically

monitor cap dynamics, as Kv1.5 concentrates at the SC distal tips.

Examining other EBP50/ion channel interactions that may be involved in SC

migration, EBP50 is known to bind the Na+/H+ exchanger isoform 3, NHE3, which

enables the electroneutral counter-transport of H+ for Na+ across the plasma membrane

(Reczek et al., 1997; Weinman et al., 1993).  A link established between pH and cellular

morphology indicates that rounding cells are 0.15 pH units more acidic than spreading

cells (Schwartz et al., 1989).  Thus, cell spreading increases intracellular pH.

Considering SC process retraction as the antithesis of spreading, we predict acidification

at the SC tip may be required.  This could be specifically mediated by down-regulation of

NHE3 and/or other local Na+/H+ antiporters.  Thus, the EBP50 concentration at the SC tip

may be serving to mediate the turnover and removal of NHE3 from the membrane.

To directly address whether this EBP50 binding partner has a role in SC

dynamics, we propose disrupting the functionality of NHE3 in these cells.  In fact,

treatment of epithelial cells with toxin B of Clostridium difficile causes inhibition of

NHE3 activity, with decreased NHE3 activity being accompanied by the translocation of

exchangers to a subapical endomembrane compartment (Hayashi et al., 2004).  In

addition, NHE3 is acutely inhibited by the cholinergic agonist carbachol, which prompts

elevation of the intracellular concentration of free calcium ions (Lee-Kwon et al., 2003).

If these NHE3 inhibitors are applied to myelination-induced DRG explants, we may be

able to promote more rapid SC process retraction and/or migration by forcing the cells to
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become generally acidotic.  However, global shifts in pH may be insufficient in

mediating localized effects at the distal tip of bipolar and at the rear of the unipolar SCs.

Lastly, if pH itself is found to be of significance, in terms of mediating process

retraction and migration, loading SCs with a pH-sensitive, ratiometric, fluorescent dye

may prove useful.  2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) can be

introduced into cells as a nonfluorescent membrane-permeant acetoxymethyl ester,

BCECF-AM.  Upon hydrolysis, BCECF-AM becomes a membrane impermeable, free-

acid derivative (Paradiso et al., 1984; Thomas, 1986).  BCECF has a pKa of 6.97,

permitting an ideal dynamic range for monitoring pH changes in an intracellular

environment with high sensitivity.  By monitoring SCs loaded with this dye, we may be

able correlate localized changes in intracellular pH and specific motility responses,

including process retraction and migration itself.

Considering EBP50 in terms of its influence on SC dynamics, we must further

note that cell migration generally requires the extension of a leading process, formation

and stabilization of forward adhesions, contraction and advancing of the cell body, and

disassembly of rear adhesions (Horwitz and Parsons, 1999).  The localization of this

membrane adaptor protein to the distal tips of retracting SC processes and to the rear of

the migrating unipolar cell implies that EBP50 could aid in localizing components that

function in mediating the dissolution of adhesive interactions required to propel the SC

forward.  Our initial studies have demonstrated the co-localization of EBP50 and/or

pERM at SC distal tips in 65.4±3.4% of cap-presenting cells with the cell adhesion

molecule N-cadherin (Fig. 36).
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Figure 36 - N-cadherin localizes to the SC distal tip

A) The potential association of adhesive components with the SC distal tip/cap was

examined in isolated SCs.  Immunostaining with EBP50 or phospho-ERM (red) revealed

the frequent co-localization of N-cadherin (green) in areas enriched with these

microvillar components.  Scale bar=10 µm.  B) Quantitatively, 65.3±3.4% of the SC caps

were reactive for either EBP50 or phospho-ERM and N-cadherin, while 34.7±3.4% were

reactive only for either EBP50 or phospho-ERM.  These data represent the average of

two independent coverslips examined that were derived from the identical preparation of

SCs.
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Cadherins mediate cell-cell adhesion via extracellular, calcium-dependent

homophilic interactions.  Their intracellular regions interact with cytosolic α- and β-

catenins.  β-catenin serves as a bridge between cadherin and α-catenin, and α-catenin

links the complex to the actin filament network (reviewed in Fukata and Kaibuchi, 2001;

Kaibuchi et al., 1999b).  Together these sets of interactions enable the formation of stable

cell-cell adhesions.  By protein interaction screening, EBP50 has been identified as a β-

catenin-associating molecule (Shibata et al., 2003), with β-catenin harboring a PDZ-

binding consensus sequence (-DTDL).  Achieving interaction with and sequestration of

β-catenin, EBP50 could down regulate N-cadherin mediated cell-cell contacts by

disrupting α- and β-catenin interactions.

Both PNS and CNS myelination studies indicate that N-cadherin functions to

support contact-mediated, axo-glial alignment of both myelinating SCs and

oligodendrocytes, respectively (Schnadelbach et al., 2001; Wanner and Wood, 2002).

These studies would suggest that uncoupling N-cadherin signaling could generate a less

axon-adhesive, more motile SC.  In practice, N-cadherin perturbation leads to 59% of

exogenous SCs becoming misaligned with respect to co-cultured DRG axons, with SCs

assuming either a multipolar or non-processed, “non-polar” phenotype (Wanner and

Wood, 2002).  As the multipolarity closely approximates our results following ERM

disruption, SCs with perturbed N-cadherin signaling may alternatively exhibit impaired

motility.  Thus, global N-cadherin disruption studies may not clearly identify the role of

N-cadherin in SC process dynamics.  However, the effect of this cell adhesion molecule

on overall SC motility has not yet been addressed.

Another line of evidence, which focuses on identifying the molecular complexes

that define EBP50’s functionality in SC processes, involves the syndecans.  The
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transmembrane, heparan sulfate proteoglycans, syndecan-3 and -4, were shown to

localize to the perinodal region of myelinating SCs (Goutebroze et al., 2003).  These

proteins function as modulators of ligand-dependent activation of primary signaling

receptors at the cell surface (reviewed in Carey, 1997).  Further, syndecan-3 is most

abundant during the late embryonic and early postnatal periods of peripheral nerve

development and binds to the non-collagenous NH2-terminal domain of alpha 4 (V)

collagen, which mediates heparan sulfate-dependent SC adhesion.  Syndecan-3 is

susceptible to matrix metalloproteinase-dependent membrane shedding, which modulates

its function (Asundi et al., 2003).  Syndecan-4 binds fibronectin (Woods and Couchman,

2001) and in conjunction with α5β1 integrin promotes stress fiber and focal adhesion

formation (Wilcox-Adelman et al., 2002).  However, the interaction of syndecan-4 with

an ECM component tenascin-C, which is present in the nodal gap under the SC basal

lamina (Martini et al., 1990; Rieger et al., 1986), decreases adhesion (Huang et al., 2001).

As the syndecans modulate adhesion based on local environment, they are well

suited to functionally dictate either process retraction or extension in SC cycling.

Linking the syndecans to the SC cap, syndecans bind ezrin through a conserved motif

originally identified in syndecan-2 (Granes et al., 2003; Granes et al., 2000).  As these

ezrin-binding proteins are present in the mature, node-associated microvilli, we speculate

that they reside at the microvillar component-enriched SC cap that functions in SC

process dynamics and motility.  Functionally, the COOH-terminal region of syndecan

interacts with the PDZ domain-containing protein syntenin (Grootjans et al., 1997),

which binds PIP2 (Zimmermann et al., 2002).  Syndecan-4, then, is capable of binding

and activating PKC in the presence of PIP2 (Bass and Humphries, 2002).
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As indicated in Chapter 5, an activated-PKC interactor implicated in cell motility

is Rack1.  Rack1 binds not only to PKC, but also to EBP50 and β1 integrin (Besson et al.,

2002; Buensuceso et al., 2001; Liedtke et al., 2003; Liedtke et al., 2002; Liliental and

Chang, 1998; Schechtman and Mochly-Rosen, 2001).  Further implicating cap-resident

proteins potentially involved, ezrin itself has been identified as an effector of integrin-

mediated signaling through PKC (Ng et al., 2001).  In addition, syndecan-4 interacts with

β1-integrin (Wilcox-Adelman et al., 2002), and β1 integrin is critical in the extension and

maintenance of SC processes along axons (Feltri et al., 2002).  Therefore, EBP50 may

provide an important bridge between integrin-mediated cell signaling and ERM

activation and function with the aid of Rack1 and the syndecans generating a key multi-

molecular complex at the SC membrane.

In terms of examining the role of the axo-glial interactions themselves in

peripheral nerve development, our results indicate a functional coupling of components

that mediate the generation of mature SC microvilli (EBP50 and ERMs) and these cells’

specific modes of motility at the onset of myelination.  This hypothesis suggests a

revisiting of genetic mutations known to generate abberant SC microvilli, i.e. the

dystroglycan mutant mouse (Saito et al., 2003), and a reassessment of the motile

properties of the SCs in these backgrounds.

Dystroglycan is expressed in SCs perinatally just prior to the onset of myelination

and binds laminin-2, which is a component of the SCs’ specialized ECM, the basal

lamina (Previtali et al., 2003).  Further, in myelinating SCs, dystroglycan interacts with

the dystroglycan-related protein 2 (DRP2), a dystrophin isoform (DP116), and utrophin.

Utrophin links the complex to the actin-based cytoskeleton (Sherman et al., 2001).
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Disruption of these interactions by selective SC dystroglycan deletion in mice is known

to impair microvilli formation and nodal clustering (Saito et al., 2003).  It would be of

significant interest to determine if dystroglycan-null SCs also posses a resultant

disruption in motility.  This could provide evidence of a key relationship between SC

motility and appropriate node of Ranvier formation mediated via a bi-functionality of

microvillar components, perhaps by allowing for correct SC positioning at the onset of

myelination and nodal organization at later stages.

The myelinating DRG explant culture system has proven to be extremely

powerful.  The capability of transfecting axon-associated glial cells has enabled the study

of effectors influencing SC development, differentiation, and motility.  However, peculiar

limitations did present themselves.  Most importantly, despite the occasional transfected

cell being engaged in active myelination, glial cell transfection appears to impede

myelination.  We were able to examine the generation and maturation of myelin segments

and nodes of Ranvier in general.  However, we were unable to effectively address the

consequences of molecular perturbations on these processes utilizing exogenous protein

introduction.

In pursuit of future experiments to extend these studies, an effective, under-

exploited avenue involves the retroviral infection of DRG-originating SCs in the explant

cultures (Howe and McCarthy, 1998).  Our preliminary usage of GFP-based retroviral

constructs allowed for not only the visualization of GFP-positive myelin but also these

segments associated with discrete nodal specializations (Fig. 37).  By employing a

dicistronic retroviral vector enabling a protein of interest to be followed by an internal

ribosomal entry site (IRES) and GFP, two open reading frames are generated, each of
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Figure 37 - Retroviral infection produces GFP-positive myelin segments

A) Using IRES-GFP based retroviruses, DRG explants were infected and examined after

the induction of myelination.  After 17 days induction (d39/M17), GFP-positive SCs

were visualized via fluorescence and differential interference contrast (DIC) microscopy,

indicating that the infection did not interfere with myelin segment generation.  B) To

ensure that retroviral infection did not impair node formation, cultures (d53/M21) were

immunostained for MBP (blue) and ankyrinG (red).  GFP-expressing SCs involved in

segment formation were identified and appropriate nodal clusters of ankyrinG were

present.  Scale bar=10 µm.
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which can be independently translated.  This would specifically allow for the

determination of the effect of a particular protein by the identification of GFP-positive

cells.  Further, the retroviral employment does not itself impair myelination or node

formation, allowing for the study of terminal phenotype effects in these processes.

Despite the significant role we have identified for microvillar components in SC

development and function, the most significant finding reported thus far in the NHERF-1

(EBP50) knockout mouse appears to be disrupted localization of the sodium-phosphate

transporter, Npt2, in the renal proximal tubule cells paired with resultant phosphate

wasting.  These animals also display muscle weakness and impaired mobility (Shenolikar

et al., 2002), suggesting potential neuromuscular deficits.  As we have shown significant

correlations among SC cap formation, SC motility, and node formation, further study of

these animals should provide key insights as to the role of EBP50 and SC microvilli in

the functioning of the PNS.  These findings could potentially aid in the therapeutic

facilitation of SC motility, prompting repair mechanisms in both neural injury and

disease states.
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Appendix I – Abbreviations

AnkB – ankyrinB

AnkG - ankyrinG

BCECF - 2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein

BME – Basal Medium Eagle’s

C-ERMAD - COOH-ERM association domain

CFTR – cystic fibrosis transmembrane receptor

cm – membrane capacitance

CMT – Charcot-Marie-Tooth disease

CNS – central nervous system

COOH - carboxy

DIC – differential interference contrast

DN – dominant negative

DRG – dorsal root ganglion

EBP50 – ezrin binding phosphoprotein 50kDa

ECM – extra-cellular matrix

E”N” – embryonic day N

ERM – ezrin-radixin-moesin family proteins

FERM – four point one, ezrin, radixin, moesin

GalC - galactocerebroside

GPI – glycosyl-phosphatidylinositol

HBSS – Hanks’s Balanced Salt Solution



158

LPA – lysophosphatidic acid

MAG – myelin-associated glycoprotein

MBP – myelin basic protein

N-ERMAD – NH2-ERM association domain

NH2 – amino

NHE3 – Na+/H+ exchanger isoform 3

NHERF-1 – NHE3 regulatory exchange factor 1

PBS-T – phosphate-buffered saline with 0.2% trition X-100

PDZ - PSD-95/DlgA/ZO-1

pERM – phospho-ERM

PH – plekstrin homology

PI 4, 5 kinase -  phosphatidyl inositol 4-phosphate 5 kinase

PIP2 - phosphatidylinositol (4,5)-bisphosphate

PLCδ - phospholipase C delta

PMP22 - peripheral myelin protein 22 kDa

P”N” – post-natal day N

PNS - peripheral nervous system

PKC - protein kinase C

P0 - protein zero

ra – axial resistance

ROCK – Rho-associated kinase

SC – Schwann cell

SEM – standard error of the mean
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vgsc – voltage-gated sodium channel

VSVG – vesicular stomatis viral G protein

WT – wild-type
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Appendix II - Supplemental Video Legends

Video1 – DRG Culture Establishment

Acutely isolated DRGs (d1) were imaged to visualize culture establishment.  Using DIC,

growth cones originating at the DRG explant can be seen migrating through the field of

view.  An initial SC followed by a wave of these cells is apparent migrating in close

association with the axons.  The video clip then advances to approximately 40 hours, and

several rounds of SC division are clearly observed.  Images were captured every 7

minutes and are shown at 5 frames/sec.

Fig15video2 – Node of Ranvier

This video shows an animated, volumetric rendering of a deconvolved Z-series through a

node of Ranvier.  The myelinated culture (d36/M15) was stained for MBP (blue),

ankyrinG (green), and EBP50 (red).  Note the EBP50-reactive SC microvilli

encompassing the axonal ankyrinG staining at the node.  The field rotates and the nodal

components alternately fade to better demonstrate their spatial relationship.  Special

thanks to Brian Schneider (Improvision) for assistance in employing OpenLab and

Volocity software to generate these images.

Fig17video3 – EBP50-GFP SC – Standard – Short Term

EBP50-GFP transfected cultures were examined via time-lapse microscopy.  Transfected

SCs in standard cultures (d29/t7) showed no specific localization of EBP50-GFP at their
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tips.  Images were captured every 3 minutes over a 60-minute period.  The video is

shown at 360x real-time (2 frames/sec).

Fig17video4 – EBP50-GFP Standard Tip

Focusing on the SC tip, there is no enrichment of EBP50-GFP in this area under standard

conditions (d29/t7).  Images were captured every 3 minutes over a 60-minute period.  The

video is shown at 360x real-time (2 frames/sec).

Fig17video5 – EBP50-GFP Myelin – Short Term

EBP50-GFP transfected cultures were examined via time-lapse microscopy.  Transfected

SCs in myelinating cultures (d29/M6/t5) had dynamic, remodeling EBP50-GFP positive

tips.  Images were captured every 3 minutes over a 60-minute period.  The video is

shown at 360x real-time (2 frames/sec).

Fig17video6 – EBP50-GFP Myelin Tip

Under myelinating conditions (d29/M6/t5), EBP50-GFP becomes highly localized to the

actively restructuring cap region.  Images were captured every 3 minutes over a 60-

minute period.  The video is shown at 360x real-time (2 frames/sec).

Fig25Avideo7 – SC process retraction - GFP

After induction of myelination, GFP-filled SCs (d27/M6/t5) demonstrate asymmetric

process retraction generating a unipolar morphology. Images were captured every 5
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minutes, and this video spans an elapsed 95 minutes, shown at 1500x real time (5

frames/sec).

Fig25Bvideo8 – SC migration – GFP

GFP-filled SCs (d27/M6/t5), upon attaining a unipolar state, undergo nucleokinetic,

directed migration.  Images were captured every 5 minutes, and this video spans an

elapsed 600 minutes, shown at 1500x real time (5 frames/sec).

Fig25Cvideo9 – SC cycling – GFP

GFP-transfected SCs (d27/M6/t5) are able to re-establish bipolarity via process

extension. Images were captured every 5 minutes, and this video spans an elapsed 600

minutes, shown at 1500x real time (5 frames/sec).

Fig26Bvideo10 – SC process retraction - EBP50-GFP

EBP50-GFP (d28/M7/t6) becomes highly localized to the SC distal tip in conjunction

with process retraction.  EBP50-GFP enrichment at a SC distal tip visually marks that

process for retraction.  Images were captured every 5 minutes, and this video spans an

elapsed 150 minutes, shown at 1500x real time (5 frames/sec).

Fig26Cvideo11 –SC migration - EBP50-GFP

EBP50-GFP transfected SC (d28/M7/t6) showing EBP50 localization at one distal tip,

associated process retraction, and subsequent unipolar migration.  Images were captured
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every 5 minutes, and this video shows an elapsed 595 minutes, shown at 1500x real time

(5 frames/sec).

Fig26Dvideo12 - SC cycling - EBP50-GFP

EBP50-GFP expressing SC (d28/M7/t6) cycles through polarity states.  This clearly

illustrates the morphologic plasticity these cells possess, undergoing process retraction,

unipolar migration, and process extension re-establishing bipolarity.  Images were

captured every 5 minutes, and this video spans an elapsed 590 minutes, shown at 1500x

real time (5 frames/sec).

Fig31Bvideo13 – Multipolar DN-ezrin (FERM) SC

FERM-ezrin/EBP50-GFP co-transfected SC (d27/M6/t5) displaying severe multipolarity

and impaired motility.  Images were captured every 5 minutes, and this video spans an

elapsed 600 minutes, shown at 1500x real time (5 frames/sec).
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