SARS-CoV-2 Receptors are Expressed on Human Platelets and the Effect of Aspirin on Clinical Outcomes in COVID-19 Patients [preprint]

Aditya Sahai
Case Western Reserve University

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/covid19

Part of the Cardiovascular Diseases Commons, Cardiovascular System Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, Hemic and Immune Systems Commons, Immunology and Infectious Disease Commons, Infectious Disease Commons, Microbiology Commons, and the Virus Diseases Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in COVID-19 Publications by UMMS Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
SARS-CoV-2 Receptors are Expressed on Human Platelets and the Effect of Aspirin on Clinical Outcomes in COVID-19 Patients

Aditya Sahai MD¹‡, Rohan Bhandari MD¹,²¹, Milka Koupenna PhD³, Jane E. Freedman MD³, Matthew Godwin BS¹, Thomas McIntyre PhD²,⁴, Mina K. Chung MD¹,²,⁴, Jean-Pierre Iskandar MD⁵, Hayaan Kamran MD¹, Essa Hariri MD⁵, Anu Aggarwal PhD², Ankur Kalra MD¹, John R. Bartholomew MD¹,⁴, Keith R. McCrae MD⁴,⁶, Ayman Elbadawi MD⁷, Lars G. Svensson MD PhD¹,⁴, Samir Kapadia MD¹,⁴ and Scott J. Cameron MD PhD¹,²,⁴ *

Running Title: Platelets Express SARS-CoV-2 Receptors & Aspirin Does Not Protect in COVID-19

Author Affiliations:
¹ Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
² Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
³ Department of Medicine, University of Massachusetts Medical School, Worcester, MA.
⁴ Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
⁵ Department of Medicine, Cleveland Clinic, Cleveland, OH
⁶ Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
⁷ Division of Cardiovascular Medicine, University of Texas Medical Branch, Galveston, TX

‡Equally contributing authors

Word Count: 2995 (main text), 199 (abstract)

References: 55

Figures: 4

Tables: 2

Address for Correspondence*: Cleveland Clinic Foundation, Department of Cardiovascular Medicine, Section of Vascular Medicine, J3-5, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. Telephone: (216) 316-6794. Email: cameros3@ccf.org

Key Words: Platelets, SARS-CoV-2, COVID-19, Thrombosis, ACE2, TMPRSS2
Abstract

Coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 is an ongoing viral pandemic marked by increased risk of thrombotic events. However, the role of platelets in the elevated observed thrombotic risk in COVID-19 and utility of anti-platelet agents in attenuating thrombosis is unknown. We aimed to determine if human platelets express the known SARS-CoV-2 receptor-protease axis on their cell surface and assess whether the anti-platelet effect of aspirin may mitigate risk of myocardial infarction (MI), cerebrovascular accident (CVA), and venous thromboembolism (VTE) in COVID-19. Expression of ACE2 and TMPRSS2 on human platelets were detected by immunoblotting and confirmed by confocal microscopy. We evaluated 22,072 symptomatic patients tested for COVID-19. Propensity-matched analyses were performed to determine if treatment with aspirin or non-steroidal anti-inflammatory drugs (NSAIDs) affected thrombotic outcomes in COVID-19. Neither aspirin nor NSAIDs affected mortality in COVID-19. However, both aspirin and NSAID therapies were associated with increased risk of the combined thrombotic endpoint of (MI), (CVA), and (VTE). Thus, while platelets clearly express ACE2-TMPRSS2 receptor-protease axis for SARS-CoV-2 infection, aspirin does not prevent thrombosis and death in COVID-19. The mechanisms of thrombosis in COVID-19, therefore, appears distinct and the role of platelets as direct mediators of SARS-CoV-2-mediated thrombosis warrants further investigation.
Introduction

COVID-19 is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and curiously displays a propensity for thrombosis in multiple vascular beds. COVID-19-related thrombosis may contribute to severe organ injury and death. The incidence of thrombotic events was as high as 31% in one cohort. Clinical and autopsy studies of COVID-19 patients suggest an increased risk of microthrombi, venous thromboembolism (VTE), and ischemic stroke. Activated platelets are circulating mediators of thrombosis and, therefore, may serve as a logical therapeutic target in COVID-19. Two registered clinical trials (NCT04363840 and NCT04365309) will prospectively evaluate patient outcomes following low dose aspirin in the context of SARS-CoV-2 infection.

SARS-CoV-2 utilizes an spike glycoprotein to bind to the host transmembrane angiotensin-converting enzyme 2 (ACE2) and is then cleaved by the serine protease TMPRSS2 to coordinate entry into the host cell. Therefore, co-expression of ACE2 and TMPRSS2 may be important for host cell entry and infectivity of SARS-CoV-2. Importantly, human tissue distribution of ACE2 and TMPRSS2 mirrors organ system involvement in COVID-19 and includes the lungs, vascular endothelium, heart, kidneys, liver, digestive tract, nasal epithelium, and central nervous system. Single-stranded RNA (ssRNA) viruses, including influenza, are engulfed by platelets and may contribute to immuno-thrombosis indirectly through developing neutrophil extracellular traps (NETs) by engaging the platelet toll-like receptor 7 (TLR7). SARS-CoV-2, another ssRNA virus, utilizes platelets to modulate immunologic responses including the development of neutrophil extracellular traps (NETs) that are emerging as pro-thrombotic responses in patients with COVID-19. Further, elevation of soluble P-selectin and sCD40L in blood from patients with COVID-19 compared to controls provides indirect evidence of platelet activation in COVID-19 coagulopathy. SARS-CoV-2 is a ssRNA virus, and therefore may directly augment platelet activation causing myocardial infarction (MI), stroke, and VTE.
A recent report demonstrated that COVID-19 patients have a divergent platelet transcriptome from healthy individuals, and aspirin suppresses COVID-19 platelet activation in vitro. The platelet surface receptor for SARS-CoV-2 was not clarified in this study, while a similar investigation by another group identified mRNA for SARS-CoV-2 in human platelets. Thus, our goal was to determine if platelets express known SARS-CoV-2 receptor proteins and, as with influenza previously, contribute to thrombotic events in patients. In the absence of clinical trial data, we sought to evaluate the potential benefit in mitigating thrombotic responses in vivo with use of aspirin or other NSAID antiplatelet therapies by propensity matching patients using real-world data.

Methods

Platelet Isolation

Healthy volunteers without any known medical history or on antiplatelet therapy donated blood specimens in accordance with and approved by the Cleveland Clinic Foundation Institutional Review Board (IRB) approval. For each subject, venous blood was drawn by a medical professional into citrate plasma tubes, then centrifuged in a tabletop centrifuge at 1100 RPM for 15 minutes. The platelet rich plasma (PRP), collected well above the buffy coat, was decanted and the platelets were centrifuged at 2600 RPM for an additional 5 minutes. These washed platelets were then used in immunoblotting and fluorescence-activated cell sorting (FACS) analyses.

Immunoblotting

Washed platelets from healthy subjects or patients with coronary artery disease (CAD) enrolled at the Cleveland Clinic main campus in Ohio were isolated and proteins separated by SDS-PAGE as we have previously documented and in accordance with IRB protocols (#19-1451 for patients and #20-413
for healthy volunteers). We utilized human brain lysate, human placenta, and engineered human heart
tissue as positive controls for TMPRSS2 and ACE2. Human brain lysate is commercially available (Novus
#NB820-59177). Human placenta lysate was prepared as follows: placental villous tissue was collected
immediately upon uncomplicated, full-term (37–42 weeks’ gestation), elective C-section deliveries at
MetroHealth Hospital in Cleveland, Ohio and approved by the Cleveland Clinic and MetroHealth IRB
(#16–1311 and #16–00335, respectively). This tissue was normally discarded placentas with intact fetal
membranes, and following inclusion in the study no protected health information, identifiers, or clinical
data were collected. A waiver of consent was approved by the Cleveland Clinic Foundation IRB as
the placentas were collected anonymously. Engineered human heart tissue was obtained as follows:
human-induced pluripotent stem cells (generated by the California Institute of Regenerative Medicine)
were differentiated into beating ventricular-like cardiomyocytes (iCMs) and grown in a monolayer. To
enhance maturation, iCMs were subsequently grown as engineered heart tissues as we have previously
described23. Immunoblotting was conducted using anti-TMPRSS2 (abcam #92323), anti-ACE2 (Abcam
#15348), anti-tubulin (CST #3873S), and anti-GAPDH (CST #5174) antibodies. The mean ratio of
TMPRSS2 or ACE2 to loading control ± SEM is documented, unless stated otherwise. Primary antibody
was used as in a 1:10000 titer overnight at 4°C in 3% bovine serum albumin/Tris-buffered saline-Tween
20. Secondary antibody (GE Healthcare, Buckinghamshire, UK) was used in a 1:2000 titer in 5%
milk/Tris-buffered saline-Tween for 1 hour at room temperature. Final autoradiographic films (Bioblot
BXR, Laboratory Product Sales, Rochester, NY) were quantified by densitometry using ImageJ software
(National Institutes of Health). All experiments were performed in accordance with relevant guidelines
and regulations.
Confocal Microscopy

Venous blood drawn into and separated as citrated plasma was lysed and fixed with BD FACS lysing solution (BD Biosciences, NJ, USA, cat# 349202) for 10 mins. The platelet pellet was washed with 1X PBS, centrifuged at 1500g for 7 mins, resuspended in HEPES-buffered Tyrode solution supplemented with 2% FBS and then stained for 1 hour with the following: CD41 to confirm platelets (ThermoFisher eBio cat #11-0419-42), ACE2 antibody (Novus cat#NBP2-72117AF647), TMPRSS2 antibody (SantaCruz cat#sc-515727 AF488) and DAPI to eliminate any DNA components. Mounted slides were resolved by fluorescent microscopy using a Scanning Disk Nikon A1 confocal microscope with 100x objective lens. All experiments were performed in accordance with relevant guidelines and regulations.

Study Design

Quality-assured clinical data from ambulatory and hospitalized Cleveland Clinic patients treated in Northeast Ohio and South Florida was used to appraise data on 22,072 symptomatic patients evaluated for COVID-19 with the goal of determining whether current aspirin use protects patients from death and/or the secondary composite outcome of MI, thrombotic stroke, and/or VTE. Positive testing for a SARS-CoV-2 amplicon by nasopharyngeal RT-PCR was used to determine infection status. The electronic medical record and hospital Medication Administration Record (MAR) was used to confirm new or ongoing administration of 81 mg aspirin or other NSAIDs for both outpatients and inpatients.

Statistical Analysis

Categorical factors are summarized using frequencies and percentages, while continuous factors are described using median and ranges. Initial descriptive analyses were performed. Comparisons were made between those with known death status and those with missing death information to identify if any differences exist in these cohorts. Then among those with known death status, differences in COVID
positive and COVID negative patients were assessed. Finally, after stratifying by COVID status, comparisons of those with and without aspirin use were performed. For all tables, continuous measures were compared using nonparametric Wilcoxon rank sum tests, while categorical factors were compared using Pearson chi-square tests or Fisher exact tests, for rare events.

Given the differences across many covariates, propensity score matching was performed to account for differences between those with and without aspirin use. This approach used two steps. First, multiple imputation was performed on all demographic and covariate measures within COVID status stratified datasets, using fully conditional specification methods. Ten imputed datasets were created. Then propensity score models were fit for each dataset, with aspirin use as the response and all other measures as predictors. Predicted probability of aspirin use from each model was calculated, and these probabilities were averaged across models for each patient. Greedy matching was then performed using a caliper of 0.2 standard deviations of the logit to create matched datasets for both COVID positive and negative patients. A small number of aspirin users could not be matched well and were excluded from the matched analysis. Comparisons of outcomes were performed using mixed effect logistic regression models to account for the matching process. Overlap weighting propensity score analyses were also performed which data with the same conclusions. This analysis was repeated using NSAID groups. For significant effects, E-values that represent the magnitude of the association between an unobserved covariate and both the medication group and outcome necessary to make the result non-significant was also calculated. Analyses were performed using SAS software (version 9.4; Cary, NC). A significance level of 0.05 was assumed for all tests.
Results

Expression of ACE2 (n=6) and TMPRSS2 (n=3) on the platelet surface was observed by confocal microscopy (Figure 1). Expression of TMPRSS2 in healthy subjects (mean age 40.1 ± 2.8 years, n=20) was also confirmed by immunoblotting at the expected molecular weight of ~50 KDa.

![Confocal microscopy images](image)

Figure 1. Expression of ACE2 and TMPRSS2 in Platelets by Confocal Microscopy. Platelets isolated from venous blood of healthy individuals was stained for 1h with the following antibodies: CD41 (platelet-specific marker), ACE2, TMPRSS2, and DAPI to eliminate any DNA components. Mounted slides were resolved by confocal fluorescent microscopy using a 100x objective lens. Images are representative of n=6 donors for ACE2 and n=3 for TMPRSS2. Each image represents a different donor. The scale bar is noted.

Utilizing human brain as a positive control, TMPRSS2 expression was standardized to a loading control with no correlation between age and platelet TMPRSS2 expression (Figure 2A; \(r^2=0.058, p=0.30 \)). Since ACE2 exists as multiple glycosylated proteins of variable molecular weight\(^{26-28}\), human placenta\(^{30}\), and engineered heart tissue\(^{31}\) were utilized as positive controls to confirm predominant migration at ~100 kDa as expected. Given that patients with confirmed CAD receive antiplatelet medications according to established guidelines, TMPRSS2 expression for healthy controls (n=20) was compared to patients with coronary artery disease (CAD, n=10) and, while numerically greater in CAD, was without a statistically significant difference (Figure 2A, p=0.15).
Similarly, expression of ACE2 in healthy subjects (n=20) was confirmed by immunoblotting. ACE2 expression standardized to tubulin did not correlate with age (Figure 2B; \(r^2 = 0.0039, p = 0.79 \)).

Platelet ACE2 in healthy subjects (n=20) was compared to patients with CAD (n=10) and, again, while numerically higher in CAD, was without a statistical difference (Figure 2B, \(p = 0.11 \)). Further, we did not observe sex-specific differences in platelet expression of ACE2 or TMPRSS2 (20 men and 20 women in...
22,072 patients tested for COVID-19 at two Cleveland Clinic hospitals between March 13, 2020 to May 13, 2020 were evaluated. Within this cohort, 11,507 patients had complete clinical data and 1,994 tested positive for the SARS-CoV-2 amplicon by RT-PCR testing. Amongst these 1,994 patients, 1,709 were not exposed and 285 patients were exposed to aspirin. In an attempt to differentiate an anti-platelet drug effect with aspirin from a more general NSAID class effect, we propensity-matched patients 1,445 patients not exposed and 465 patients exposed to NSAID therapy (Figure 3).

Figure 3. Patients Testing Positive for SARS-CoV-2 taking Aspirin or NSAIDs. Patients testing positive for a SARS-CoV-2 amplicon at two Cleveland Clinic hospitals were evaluated. Patients initiated with aspirin or NSAID therapy or continuing aspirin or NSAID if admitted to the hospital were included in this study. Clinical variables in each group where then re-evaluated following careful propensity matching.
Table 1 shows the unadjusted characteristics of each comparative cohort for aspirin.

<table>
<thead>
<tr>
<th>Factor</th>
<th>No Aspirin (N=1,709)</th>
<th>Aspirin Use (N=285)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Statistics</td>
<td>N Statistics</td>
<td></td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopid</td>
<td>1,709 9 (0.53)</td>
<td>285 27 (9.5)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Ticag</td>
<td>1,709 1 (0.06)</td>
<td>285 6 (2.1)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Prasug</td>
<td>1,709 0 (0.00)</td>
<td>285 0 (0.00)</td>
<td></td>
</tr>
<tr>
<td>Cangr</td>
<td>1,709 0 (0.00)</td>
<td>285 0 (0.00)</td>
<td></td>
</tr>
<tr>
<td>Clopid</td>
<td>1,709 0 (0.00)</td>
<td>285 0 (0.00)</td>
<td></td>
</tr>
<tr>
<td>Pentox</td>
<td>1,709 0 (0.00)</td>
<td>285 1 (0.35)</td>
<td>0.14*</td>
</tr>
<tr>
<td>AntiPlt</td>
<td>1,709 10 (0.59)</td>
<td>285 285 (100.0)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Multiple Therapy</td>
<td>1,709 0 (0.00)</td>
<td>285 34 (11.9)</td>
<td><0.001*</td>
</tr>
<tr>
<td>AC_therapeutic</td>
<td>1,709 94 (5.5)</td>
<td>285 56 (19.6)</td>
<td><0.001*</td>
</tr>
<tr>
<td>AC_prophylct</td>
<td>1,709 355 (20.8)</td>
<td>285 215 (75.4)</td>
<td><0.001*</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>1,650 294 (17.8)</td>
<td>260 171 (65.8)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Covariates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1,709 50.6 ± 17.5</td>
<td>285 70.0 ± 13.6</td>
<td><0.001*</td>
</tr>
<tr>
<td>Platelets</td>
<td>689 217.4 ± 79.3</td>
<td>253 207.7 ± 85.3</td>
<td>0.14*</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>804 (48.7)</td>
<td>172 (60.4)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>847 (51.3)</td>
<td>113 (39.6)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>White</td>
<td>948 (60.6)</td>
<td>144 (51.4)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>506 (32.4)</td>
<td>124 (44.3)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>110 (7.0)</td>
<td>12 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1,480 204 (13.8)</td>
<td>7 (2.5)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>1,276 (86.2)</td>
<td>270 (97.5)</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>No</td>
<td>924 (65.2)</td>
<td>123 (45.9)</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>362 (25.5)</td>
<td>124 (46.3)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>131 (9.2)</td>
<td>21 (7.8)</td>
<td></td>
</tr>
<tr>
<td>RespSuprt</td>
<td>1,709 191 (11.2)</td>
<td>285 117 (41.1)</td>
<td><0.001*</td>
</tr>
<tr>
<td>OnPressors</td>
<td>1,709 81 (4.7)</td>
<td>285 47 (16.5)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Hemodlastab</td>
<td>1,709 85 (5.0)</td>
<td>285 48 (16.8)</td>
<td><0.001*</td>
</tr>
<tr>
<td>COPD_emphysema</td>
<td>1,359 82 (5.9)</td>
<td>274 53 (19.3)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Asthma</td>
<td>1,410 243 (17.2)</td>
<td>273 66 (24.2)</td>
<td>0.007*</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1,424 318 (22.3)</td>
<td>278 147 (52.9)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,447 659 (45.5)</td>
<td>281 244 (86.8)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Coronary_artery_disease</td>
<td>1,405 116 (8.3)</td>
<td>275 100 (36.4)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Heart_Failure</td>
<td>1,404 108 (7.7)</td>
<td>274 78 (28.5)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Cancer</td>
<td>1,447 184 (12.7)</td>
<td>280 63 (22.5)</td>
<td><0.001*</td>
</tr>
<tr>
<td>On_immunosuppressive_treatment</td>
<td>1,456 144 (9.9)</td>
<td>277 36 (13.0)</td>
<td>0.12*</td>
</tr>
</tbody>
</table>

Statistics presented as Mean ± SD, N (column %). p-values: a1=t test, a2=Satterthwaite t-test, c=Pearson's chi square test, d=Fisher's Exact test.
Table 2 shows the unadjusted characteristics of each comparative cohort for NSAIDs.

<table>
<thead>
<tr>
<th>Factor</th>
<th>No NSAIDs (N=1,445)</th>
<th>NSAIDs (N=465)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOPID</td>
<td>1,445</td>
<td>465</td>
<td><0.001*</td>
</tr>
<tr>
<td>Ticag</td>
<td>1,445</td>
<td>465</td>
<td><0.001*</td>
</tr>
<tr>
<td>Prasug</td>
<td>1,445</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Cangr</td>
<td>1,445</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Cilost</td>
<td>1,445</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Pentox</td>
<td>1,445</td>
<td>465</td>
<td>0.24*</td>
</tr>
<tr>
<td>AntiPit</td>
<td>1,445</td>
<td>465</td>
<td><0.001*</td>
</tr>
<tr>
<td>Multiple Therapy</td>
<td>1,445</td>
<td>465</td>
<td><0.001*</td>
</tr>
<tr>
<td>AC_therapeutic</td>
<td>1,445</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>AC_prophylct</td>
<td>1,445</td>
<td>465</td>
<td><0.001*</td>
</tr>
<tr>
<td>Covariates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1,445</td>
<td>465</td>
<td><0.001*</td>
</tr>
<tr>
<td>Platelets</td>
<td>574</td>
<td>314</td>
<td>0.97*</td>
</tr>
<tr>
<td>Gender</td>
<td>1,390</td>
<td>462</td>
<td>0.36*</td>
</tr>
<tr>
<td>Male</td>
<td>688 (49.5)</td>
<td>240 (51.9)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>702 (50.5)</td>
<td>222 (48.1)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>1,310</td>
<td>451</td>
<td>0.005*</td>
</tr>
<tr>
<td>White</td>
<td>801 (61.1)</td>
<td>243 (53.9)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>416 (31.8)</td>
<td>181 (40.1)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>93 (7.1)</td>
<td>27 (6.0)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>1,228</td>
<td>454</td>
<td><0.001*</td>
</tr>
<tr>
<td>Hispanic</td>
<td>178 (14.5)</td>
<td>31 (6.8)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>1,050 (85.5)</td>
<td>423 (93.2)</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>1,162</td>
<td>452</td>
<td><0.001*</td>
</tr>
<tr>
<td>No</td>
<td>763 (65.7)</td>
<td>247 (54.6)</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>303 (26.1)</td>
<td>160 (35.4)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>96 (8.3)</td>
<td>45 (10.0)</td>
<td></td>
</tr>
<tr>
<td>RespSuprt</td>
<td>1,445</td>
<td>465</td>
<td>0.019*</td>
</tr>
<tr>
<td>OnPressors</td>
<td>1,445</td>
<td>465</td>
<td>0.70*</td>
</tr>
<tr>
<td>HemoxInstab</td>
<td>1,445</td>
<td>465</td>
<td>0.84*</td>
</tr>
<tr>
<td>COPD_emphysema</td>
<td>1,161</td>
<td>440</td>
<td><0.001*</td>
</tr>
<tr>
<td>Asthma</td>
<td>1,168</td>
<td>442</td>
<td>0.010*</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1,179</td>
<td>450</td>
<td><0.001*</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,198</td>
<td>453</td>
<td><0.001*</td>
</tr>
<tr>
<td>Coronary_artery_disease</td>
<td>1,162</td>
<td>445</td>
<td><0.001*</td>
</tr>
<tr>
<td>Heart_Failure</td>
<td>1,162</td>
<td>444</td>
<td><0.001*</td>
</tr>
<tr>
<td>Cancer</td>
<td>1,202</td>
<td>447</td>
<td>0.11*</td>
</tr>
<tr>
<td>On_immunosuppressive_treatment</td>
<td>1,209</td>
<td>446</td>
<td>0.14*</td>
</tr>
<tr>
<td>History_of_transplant</td>
<td>1,159</td>
<td>443</td>
<td>0.014*</td>
</tr>
</tbody>
</table>

Statistics presented as Mean ± SD, N (column %).

p-values: a=t-test, c= Pearson's chi-square test, d=Fisher's Exact test.
The 248 propensity-matched patients either treated with aspirin or not demonstrated no significant
group differences in demographics or clinical covariates. Aspirin therapy did not alter mortality (13.3%
vs 15.3%, p=0.53). The 444 propensity-matched patients either exposed or not to NSAIDs demonstrated
no significant group differences in demographics or clinical covariates. NSAID therapy did not alter
mortality (7.0% vs 7.2%, p=0.90). In propensity-matched patients treated with aspirin, the incidence of
MI (2.0% vs 0.81%, p=0.27) and VTE (4.0% vs 1.6%, p=0.12) were not significantly different, but aspirin
therapy was associated with an increased risk of thrombotic stroke (3.6% vs 0.40%, p=0.036). In
propensity-matched patients treated with NSAIDs, the incidence of MI (0.68% vs 0.23%, p=0.34), VTE
(2.0% vs 0.90%, p=0.17), and thrombotic stroke (1.1% vs 0.45%, p=0.27) was not affected. Using the
composite thrombotic endpoint of MI, VTE, and thrombotic stroke, both aspirin (9.3% aspirin vs 2.8% no
aspirin, p=0.005) and NSAID therapy (3.8% NSAIDs vs 1.6% no NSAIDs, p=0.046) were associated with
signals for thrombosis (Supplemental Figure 1). Overall, there was no change in mortality in COVID-19
for patient treated with either aspirin (OR 0.52, 95% CI: 0.51-1.41; p=0.52) or NSAIDs (OR 0.97, 95% CI:
0.58-1.62; p=0.90) (Figure 4).

![Aspirin NSAIDs OR (95% C.I.)](image)

Figure 4. Mortality for Propensity-matched patients: Propensity-matched data for patients testing positive for
COVID-19 and outcomes taking either 81 mg aspirin (n=248 in each group) or NSAIDs (n=444 in each group) at the
time of diagnosis. Forest plot representation of data as Odds Ratio (OR) with 95% confidence interval (C.I.) for the
primary endpoint of death.

However, both aspirin and NSAID use in COVID-19 show signals for harm with increased thrombotic risk
with aspirin (OR 3.52, 95% CI: 1.48-8.40; p=0.005) and NSAIDs (OR 2.49, 95% CI: 0.58-1.62; p=0.046) for
the composite endpoint of MI, thrombotic stroke, and VTE (Supplemental Figure 2).

Discussion

In this study, we make the observation that both ACE2 and TMPRSS2 proteins which bind and ligate
SARS-CoV-2 are expressed in healthy human platelets. The expression of these receptors in platelets
does not vary significantly with age and, while numerically higher, are not strikingly different in patients
with CAD compared to healthy controls. The presence of known SARS-CoV-2 receptors on platelets
suggests the possibility that SARS-CoV-2 may directly activate platelets and contribute to thrombosis or
promote thrombosis indirectly by mediators secreted from platelets.

A recent investigation revealed platelet reactivity is enhanced in COVID-19 patients and appears to
be suppressed by the presence of high dose aspirin in vitro. In the absence of randomized controlled
data for aspirin in patients with COVID-19, we conducted a propensity-matched analysis of patients
showing aspirin has no mortality benefit in patients with COVID-19, and, in fact, displays a slightly
increased signal for harm driven mostly by thrombotic stroke. Platelet reactivity data in vitro is often
extrapolated to suggest a risk for harm, but it is important to acknowledge that the behavior of anti-
platelet medications in vivo can be markedly different from in vitro studies. Our goal was to clarify this
concern by using real-life data with both mortality and thrombotic end points.

The failure to show a protective effect of the antiplatelet medication aspirin in patients with COVID-19
may be related to the dose administered, an insensitivity to aspirin’s mechanism of platelet inhibition in
COVID-19, or an altered platelet phenotype as was clearly demonstrated by Manne et al. comparing
healthy platelets to platelets from patients with COVID-19. Cameron et al. previously demonstrated a
divergent platelet phenotype in patients with chronic arterial disease and diabetes with resistance to aspirin and clopidogrel therapy in diseased but not healthy platelets21. Similarly, Liang \textit{et al} demonstrated in platelets from patients with diabetes, surface P2Y\textsubscript{12} receptors are arranged in a different conformation and are impressively resistant to inhibition by clopidogrel35.

Elbadawi \textit{et al}. reported the absolute neutrophil count and not D-dimer, a traditional biomarker associated with thrombosis, is an independent predictor of thrombotic events in patients with COVID-1936. The mortality benefit of dexamethasone, an immunosuppressant and anti-inflammatory medication, in hospitalized patients with COVID-1937 and recent reports of immunothrombosis17,38-41 and microvascular occlusion18,42-44 by multiple independent groups suggest platelets may be indirect mediators of thrombosis and perhaps not the best direct targets for pharmacological intervention.

Contemporaneous with submission of this manuscript, a smaller, non-propensity matched study has shown aspirin treatment decreased mortality that was driven by reduced ICU level care and mechanical ventilatory needs but not thrombosis in patients with COVID-19. This report suggests a protective effect of aspirin that is distinct from altering end-organ thrombosis45, and possibly from immune-mediated acute respiratory distress syndrome (ARDS) as previously demonstrated46,47. By evaluating another anti-inflammatory mechanism using patients treated with NSAIDs in parallel with aspirin in the same hospital and locations in the U.S., we similarly show no effect on mortality, with all statistical models accounting for any contribution of prophylactic and therapeutic heparin use in hospitalized patients and subsequent outcomes.

The signal for increased composite thrombotic events in COVID-19 patients treated with aspirin was surprising and driven mostly by stroke. Recent observational studies show mixed results for COVID-19-related stroke risk with one small study suggesting an increased risk in younger patients48, one large
study showing an overall low risk49, and one very large study paradoxically showing that COVID-19 infection is associated with a decreased risk of thrombotic cerebrovascular stroke50. A mechanistic explanation for our finding may be related to the known neuroprotective effect of interleukin-6 (IL-6)51 which is greatly elevated in systemic SARS-CoV-2 infection52 and reported to be reduced by aspirin53.

We show quite clearly in our study with investigators working independently of each other in different regions of the U.S. that human platelets contain the SARS-CoV-2 receptors ACE2 and TMPRSS2. The inter-individual expression difference of platelet ACE2 and TMPRSS2 was striking. Our overall observation is consistent with the findings of Zaid et al. who identified SARS-CoV-2 mRNA in human platelets implying a mechanism of entry must exist, and then a report by Zhang et al. who identified ACE2 on human platelets20,54. Our data are at odds with Manne et al. who failed to detect ACE2 protein in platelets by immunoblotting using white blood cells (WBC) as a positive control 33. Notably, Manne et al. employed a CD45 depletion step on isolated platelets to eliminate the possibility of WBC contamination prior to immunoblotting. CD45 is also present on platelets, and we previously demonstrated this step decreases the platelet yield available for immunoblotting 22. Lastly, Nassa et al. have very elegantly shown that the platelet transcriptome and proteome are dynamic and often mRNA to protein concordance is not observed but, rather, dependent on external platelet cues55. Overall, our data are congruent with Koupenova et al. suggesting that the ssRNA virus SARS-CoV-2 may behave similarly to the ssRNA influenza virus by utilizing platelets to modulate immune function that ultimately may lead to immunothrombosis16.
Study Limitations

The observational nature of this study from just two hospitals has intrinsic limitations, and the small patient sample to allow for propensity matching limits generalizability of our findings. A few patients testing positive for SARS-CoV-2 were ambulatory and we relied on physician prescriptions making it impossible to confirm compliance to aspirin therapy.

Conclusions

SARS-CoV-2 high affinity receptors are present in platelets from healthy individuals. This finding crucially suggests platelets may be involved in COVID-19 pathogenesis and the observed thrombotic phenotype. However, our real-world clinical data suggests regular intake of low dose aspirin does not protect against adverse thrombotic events or death in COVID-19 patients. Platelets are fastidious components of the circulatory system with a wide range of critical functions, including contributing to immunoinflammatory host responses. Thus, targeting platelet thrombotic function may alter its roles in other domains. The nuanced mechanisms of thrombosis in COVID-19 may be unique and deserves further investigation. The use of traditional antiplatelet agents may not protect against thrombotic events or mortality in COVID-19, but, in fact, cause harm. The awareness of this potential harm and role of randomized controlled drug trials in assessing the suitability of antiplatelet agents in COVID-19 is critical.
Contributors

Study design (AS, SJC, RB, AE, AK, JF, LGS, MKC, HK, JPI, MK, SK, TM, KRM)

Data collection (AS, SJC, RB, MKC, HK, JPI, MG, MK, JEF, JRB, EH, AA)

Data analysis (AS, SJC, AE, MKC, HK, JPI, MK, JEF, JRB, EH, SK)

Data interpretation (AE, AK, JF, LGS, MKC, HK, JPI, MG, MK, JEF, JRB, EH, AA, SK)

Figures (AS, SJC, MG, MK, JEF, JRB, EH, AA, SK)

Literature (AS, SJC, RB, AE, AK, JF, LGS, MKC, HK, MK, JEF, JRB, EH, SK, TM KRM)

Writing (AS, SJC, RB, AE AK, JF, MKC, HK, JPI, MG, MK, JEF, SK, TM, KRM)

All authors gave final approval for this version of the manuscript to be published.

Acknowledgements

Financial support from NHLBI K08HL128856 and NHLBI LRPHL120200 to SJC and R01 HL143402 to KRM, R01 HL153235 and CTSA grant (UMCCTS funded by NCATS: grant UL1TR001453, TL1TR00454, and KL2TR001455) to MK, and AHA COVID19 Rapid Response Award to JEF.

Declaration of Interests

None of the authors have any relevant conflicting financial, personal, or professional relationships.
References

Figures

Figure 1. Expression of ACE2 and TMPRSS2 in Platelets by Confocal Microscopy. Platelets isolated from venous blood of healthy individuals was stained for 1h with the following antibodies: CD41 (platelet-specific marker), ACE2, TMPRSS2, and DAPI to eliminate any DNA components. Mounted slides were resolved by confocal fluorescent microscopy using a 100x objective lens. Images are representative of n=6 donors for ACE2 and n=3 for TMPRSS2. Each image represents a different donor. The scale bar is noted.

Figure 2. A. Expression of TMPRSS2 in Platelets: Washed platelets from healthy individuals (mean age 40.1 ± 2.8 years, n=20) were isolated and proteins separate by SDS-PAGE with molecular weight shown in KiloDaltons (KDa). Immunoblotting was conducted an using an anti-TMPRSS2 antibody or anti-tubulin immunoblotting as a loading control. The ratio of protein to loading control is expressed as a function of age and the correlation coefficient is noted (r ± 95% CI, P=0.30). Human brain lysate served as a positive control for TMPRSS2 migrating at the expected molecular weight (~50 KDa). Data shown are representative of 20 healthy individuals (10 male and 10 female) and 10 patients with coronary artery disease (CAD). The mean ratio of TMPRSS2/Tubulin ± SEM is noted, P=0.145 between healthy and CAD by Mann Whitney U. B. Expression of ACE2 in Platelets: Washed platelets from healthy individuals (mean age 40.1 ± 2.8 years, n=20) were isolated and proteins separate by SDS-PAGE with molecular weight shown in KiloDaltons (KDa). Lane 1 is human platelet lysate, lane 2 is human brain lysate, lane 3 is human placenta lysate, lane 4 is lysate from engineered human heart tissue. Immunoblotting was conducted using an using anti-ACE2 antibody. Anti-tubulin and anti-GAPDH are loading controls. ACE2 migrates at the expected molecular weight (~100 KDa) shown by an arrowhead with glycosylated forms indicated by *. The ratio of ACE2 protein to loading control is expressed as a function of age and the correlation coefficient is noted (r ± 95% CI, P=0.79). Data shown are representative of 20 healthy individuals (10 male and 10 female) and 10 patients with coronary artery disease (CAD). The mean ratio of ACE2/Tubulin ± SEM is noted, P=0.112 between healthy and CAD by Mann Whitney U.

Figure 3. Patients Testing Positive for SARS-CoV-2 taking Aspirin or NSAIDs. Patients testing positive for a SARS-CoV-2 amplicon at two Cleveland Clinic hospitals were evaluated. Patients initiated with aspirin or NSAID therapy or continuing aspirin or NSAID if admitted to the hospital were included in this study. Clinical variables in each group where then re-evaluated following careful propensity matching.

Table 1. Characteristics of Population taking Aspirin Therapy: Unadjusted data are for patients testing positive for SARS-CoV-2 not taking aspirin or with established aspirin therapy or initiated with low dose aspirin at the time of diagnosis.

Table 2. Characteristics of Population taking NSAID Therapy: Unadjusted data are for patients testing positive for SARS-CoV-2 not taking NSAID or with established NSAID therapy or initiated with NSAID at the time of diagnosis.

Figure 4. Mortality for Propensity-matched patients: Propensity-matched data for patients testing positive for COVID-19 and outcomes taking either 81 mg aspirin (n=248 in each group) or NSAIDs (n=444 in each group) at the time of diagnosis. Forest plot representation of data as Odds Ratio (OR) with 95% confidence interval (C.I.) for the primary endpoint of death.