Adipose Tissue Therapeutics for Scar Rehabilitation after Thermal Injury

Dylan Perry
University of Massachusetts Medical School

Et al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/ssp

Part of the Pathological Conditions, Signs and Symptoms Commons, Plastic Surgery Commons, Skin and Connective Tissue Diseases Commons, Therapeutics Commons, and the Tissues Commons

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Senior Scholars Program by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Adipose tissue therapeutics for scar rehabilitation after thermal injury

Dylan Perry, Jorge Lujan-Hernandez M.D., Ava Chappell, So Yun Min, Raghuram Croasani, Raziel Rojas-Rodriguez, Michael Chin M.D., Silvia Corvera M.D., Janice Lalikos M.D.

Division of Plastic and Reconstructive Surgery. Program in Molecular Medicine. Division of Radiation Oncology. University of Massachusetts Medical School

Introduction

THE PROBLEM
- Burn injuries are common and always lead to scarring. Deep burns and those taking longer to heal often heal pathologically.
- Scarring, especially pathological hypertrophic scarring, leads to morbid symptoms (pain, pruritus), functional impairment, and negative aesthetic and psychiatric consequences.

A POTENTIAL SOLUTION
- Autologous adipose tissue grafting (“Fat Grafting”) and adipose-derived stem cell (ADSC) therapy may improve wound healing and scar outcomes in acute burn, excisional, and radiation skin injury models.
- Clinical case reports suggest adipose therapeutics may improve the remodeling of chronically scarred skin tissue by improving skin color, texture, pliability, and patient symptoms. At least one clinical trial is ongoing.
- Most basic research focuses on acute phase intervention, few if any studies examine adipose derived therapeutics for improved remodeling of chronic scars.

PROJECT GOALS
- Determine if adipose tissue can improve scar remodeling subacutely after acute wound healing phases have concluded in a mouse model of thermal injury.
- Compare the effects of processed lipoaspirate to adipose-derived stem cells.

Materials & Methods

- N = 50 CD1 Nu/Nu (Athymic, nude) mice received standardized 70°C 10s burn (under anesthesia and analgesia) with a brass rod to dorsal skin and monitored for six weeks while chronic scars formed (Fig 1-3).
- At six weeks animals were randomized to five groups (Table 1): non-injected controls received no injection, other groups received subcutaneous injection of 0.6mL human lipoaspirate, human ADSCs in matrigel hydrogel suspension, or matrigel control. Adipose tissue from discarded human pannus. ADSCs from SVF ex-vivo culture.
- Skin perfusion measured with Hyperspectral Imaging (HSI) and digital photos were taken at 4 time points.
- Mice were sacrificed at 10 weeks post-burn (PB) (4 weeks after engraftment) for skin histology.
- Scar wound area and oxy and deoxy hemoglobin (HSI measures) were determined at all time points.
- Skin tissue samples were stained for vascularity (CD31) and collagen composition (Picro-Sirius red, Masson’s Trichrome). Matrigel explants were H&E stained.

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Data Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=10</td>
<td>Non-injected Control</td>
<td>Matrigel Control</td>
</tr>
<tr>
<td>N=10</td>
<td>Matrigel</td>
<td>Human high density Lipoaspirate</td>
</tr>
<tr>
<td>N=10</td>
<td>Low Dose (10^6) ADSCs in Matrigel</td>
<td>High Dose (10^6) ADSCs in Matrigel</td>
</tr>
</tbody>
</table>

Result

- Scar wound area: Lipoaspirate treated mice had significantly reduced perceived scar area compared to controls at 10 weeks (Fig 4).
- Histology: CD31 IHC trouble. Dermal vessels visualized on Masson’s Trichrome counted in 3 hps/slide show increase in G3 compared to G1 (Fig 5). Collagen picro photomorphometry ongoing. H&E stain of matrigel explants show living cells within hydrogel matrix.
- Hyperspectral imaging: Changes in oxy, deoxy, and total hemoglobin (Hb) consistent all mice until week 6 prior to treatment (not shown).
- G3 significantly increased oxy Hb from week 6 to 10 compared to other groups (Fig 6).
- G3-5 significantly lower deoxy Hb compared G1 10.6 wks (~0.9, not shown). Total Hb reduced (~0.9) in G4-5 compared to G1 at 10.6 wks (not shown).
- ADSC FACs analysis: CD34+, CD45-, CD24-, CD144+, CD44+, CD29+, CD73 and CD105 mostly fits MSC phenotype.

Future Directions

- Molecular analysis of scar remodeling targets such as TGF-β1/3, α-SMA, col 1/3, VEGF, MMP9, SMAD-3.
- Experiment with other hydrogels or no hydrogel in this case was a factor in reducing ADSC efficacy.
- Continue attempts at improving photomorphometric analysis of picrosirius red collagen staining.
- Include a “supercharged” lipoaspirate for comparison (Lipo + ADSCs).
- Consider porcine studies, a higher fidelity human skin model and better model of hypertrophic scarring.
- Consider consultation with dermatopathology experts for new clues for histological analysis.

References

Contact Info:
Dylan Perry
Medical Student, MS4
Division of Plastic Surgery
Dylan.Perry@UMassMed.edu

Examples of burn scarring. Hypertrophic scar areas are raised and erythematous. Note also changes in texture, pigmentation, and contraction of skin limiting mobility.