May 8th, 10:30 AM - 12:00 PM

Improving the Outcome Prognostication of Critically Ill Patients with Moderate-Severe TBI

Susanne Muehlschlegel
University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Health Services Administration Commons, Nervous System Diseases Commons, Neurology Commons, Translational Medical Research Commons, and the Trauma Commons

Repository Citation
Muehlschlegel S. (2013). Improving the Outcome Prognostication of Critically Ill Patients with Moderate-Severe TBI. UMass Center for Clinical and Translational Science Research Retreat. https://doi.org/10.13028/n7gp-we03. Retrieved from https://escholarship.umassmed.edu/cts_retreat/2013/presentations/9

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Improving the Outcome Prognostication of Critically Ill Patients with moderate-severe TBI

Susanne Muehlschlegel, MD, MPH
Assistant Professor of Neurocritical Care
UMASS Depts. Of Neurology, Anesthesia/Critical Care and Surgery
Disclosures

• No conflict of interest

• Research support:
 – American Heart Association AHA 09SDG2030022
 – Worcester Research Foundation 2010
 – Faculty Scholar Award 2011
 – Departmental
Traumatic Brain Injury remains a real public health problem in the U.S. (and worldwide).

Appr. 1.7 million Americans sustain a TBI annually

- 52,000 Deaths
- 275,000 Hospitalizations
- 1,365,000 Emergency Department Visits
- ??? Receiving Other Medical Care or No Care*

Moderate-severe TBI
GCS 3-12

- 25% of these are moderate-severe TBI.
Outcome prognostication is extremely important for families and clinicians.

- **Families**
 - Informed decisions about Aggressiveness of care and Future planning

- **Clinicians**
 - Need to provide information to Families and other providers which will Guide aggressiveness of care (prevent self-fulfilling prophecies)

Improved Outcome Prognostication
Withdrawal of Care may lead to self-fulfilling prophecies.

- **Clinician assessment**: Clinician predicts poor outcome to family.
- **Assumption of likely outcome**: Family decides to withdraw care based on clinician prediction.
- **Death**

Becker et al. Neurology 2001
TBI is a heterogeneous disease, making outcome prognostication difficult.
The outcome prediction in TBI is complex.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Admission</th>
<th>Clinical course</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient’s characteristics</td>
<td>Injury details</td>
<td>Biological response to injury</td>
<td>Mortality</td>
</tr>
<tr>
<td>Biological constitution</td>
<td>Type (eg. closed,</td>
<td>Metabolomics</td>
<td>Glasgow outcome scale (extended)</td>
</tr>
<tr>
<td>Genotype</td>
<td>penetrating),</td>
<td>Change in admission variables</td>
<td>Health-related quality of life</td>
</tr>
<tr>
<td>Demographic factors</td>
<td>cause</td>
<td>Clinical severity</td>
<td>Neuroimaging</td>
</tr>
<tr>
<td>Age, ethnic origin</td>
<td></td>
<td>Intracranial (GCS/pupils), extracranial (AIS/ISS)</td>
<td>Neuropsychological assessment</td>
</tr>
<tr>
<td>Socioeconomic status and</td>
<td></td>
<td>Secondary insults</td>
<td></td>
</tr>
<tr>
<td>education</td>
<td></td>
<td>Systemic (hypoxia, hypotension, hypothermia),</td>
<td></td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td>intracranial (neuroworsening, seizures)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT characteristics</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Overview of the components of prognosis in traumatic brain injury

GCS=Glasgow coma scale. AIS/ISS=abbreviated injury score/injury severity score. ICP=intracranial pressure. PO₂=partial pressure of oxygen.

From: Lingsma et al. Lancet Neurol 2010
The IMPACT data set has lead to the validated IMPACT predictors.

http://www.tbi-impact.org/

IMPACT = International Mission for Prognosis and Clinical Trial design in TBI
3 centers:
 Erasmus University in Rotterdam, Netherlands
 University of Edinburgh, Scotland,
 Virginia Commonwealth University Medical College, Richmond, VA

IMPACT: 11 studies total (8 RCT; 3 observational cohort studies) n=9099
The IMPACT study risk calculator is a free online tool to estimate the 6-month outcome after TBI.

From: http://www.tbi-impact.org
Admission characteristics are strong prognosticators as shown by the IMPACT data.

The cumulative \(R^2 \) of the full model is 0.35.

The IMPACT predictors only explain about \(1/3 \) of the outcome variability.

Figure 2: Prognostic value of different components of traumatic brain injury prognosis \((R^2) \) in the IMPACT dataset \((n=8686)\)

The cumulative \(R^2 \) of the full model is 0.35. IMPACT=International Mission for Prognosis and Clinical Trial design in TBI. \(R^2 \)=proportion of variability in outcome explained by the predictor(s). Data from Murray and colleagues. 20

From: Lingsma et al. Lancet Neurol 2010
The IMPACT score ignores the hospital course.

• Our hypothesis:

- Admission “IMPACT variables”
- Long ICU stay
- Medical Complications
- Neurological Complications

Outcome
Prior literature shows that non-neurologic organ failure may contribute to 2/3 of all TBI deaths.

• The number of organs failing correlates with mortality.
• All studies retrospective and largest n=209

Kemp et al. American Surgeon 2008; Zguyn et al. CCM 2005
UMASS OPTIMISM Study (Outcome Prognostication in Traumatic Brain Injury)

Started Nov 2009, ongoing
Total n=238

limited to moderate-severe TBI
456 datafields

Demographics
Pre-hospital data
Trauma ED data
Head CT data – consensus by all three neurointensivists
ICU admission “enrollment” post-resuscitation GCS first 24h unless intoxicated
NSG interventions
Specific ICU complications, predefined,
 reviewed weekly, – consensus by all three neurointensivists
Outcome: GOS at hospital discharge
3-month, 12-month by phone, recently added 6-month:
 GOS, GOSE, mRS, Lawton ADL, SF-12, TICS
ICU medical complications are common in our cohort:

- Acute Myocardial Infarction: 2%
- Rhabdomyolysis: 2%
- Acute liver failure: 4%
- Venous Thromboembolism: 5%
- Cardiac arrest: 6%
- Acute renal failure: 7%
- Disseminated intravascular coagulation: 8%
- ARDS: 9%
- Pulmonary edema: 12%
- Urinary Tract Infection: 13%
- Ventilator associated pneumonia (VAP): 18%
- New arrhythmia: 23%
- Hyponatremia: 29%
- Anemia requiring transfusion: 33%
- Sepsis including septic shock: 36%
- Pneumonia: 41%
- Hypotension requiring pressors: 42%
- Systemic Inflammatory Response Syndrome (SIRS): 60%
- Fever: 62%
- Hyperglycemia: 79%

N=213

Muehlschlegel et al. Neurocritical Care 2013
These are the neurological ICU complications in our cohort:

- CNS infection: 0.5%
- Ischemic Stroke: 7%
- Seizure: 11%
- Brain edema Rx osmotherapy: 37%
- Rebleed: 39%
- Herniation: 39%
- ICP crisis*: 62%

*ICP crisis in n=62 patients with ICP monitor in place

Muehlschlegel et al. Neurocritical Care 2013
ICU complications contribute significantly and to a high degree to the outcome variability.

Muehlschlegel et al. Neurocritical Care 2013
In summary, outcomes research may identify modifiable predictors of outcome.

• Outcome prognostication is extremely important
• Be aware of self-fulfilling prophecies
• Focus on ICU course to identify factors that may explain the other 2/3 of the variability of outcome after TBI
Thank you...

....Any questions?

"How do you want it—the crystal mumbo-jumbo or statistical probability?"

From: www.CartoonStock.com