Early Impact of Lung Cancer Screening in US population in the SEER Registries

Isabel Cristina Martins Emmerick

University of Massachusetts Medical School

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/surgery_pp

Part of the Diagnosis Commons, Epidemiology Commons, Health Services Administration Commons, Health Services Research Commons, Neoplasms Commons, Oncology Commons, Respiratory Tract Diseases Commons, and the Surgery Commons

Repository Citation

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Surgery Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Background
Lung cancer is the second most common cancer in men and women, comprising 13% of all new cancers. It is by far the leading cause of cancer death among men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. Increasing age is a risk factor for the development of lung cancer with most cases diagnosed in individuals who are 65 or older.(1,2) There is an increasing effort to improve early detection of lung cancer, since this is a curable cancer if diagnosis and treatment are performed in a timely manner.(3)

The National Lung Cancer Screening Trial (NLST) demonstrated improved overall survival (OS) and lung cancer specific survival (LCSS), likely due to finding early-stage Non-Small Cell Lung Cancer (NSCLC). (4,5)

Objectives
Our study investigates the impact of the NLST publication in 2011 on the lung cancer outcomes in the general US Population by assessing the incidence rates, ratio of early/late stage, and lung cancer mortality in the years immediately prior to and following this publication.

Methods
Rate sessions from the SEER18 database were accessed during the years 2008-2015. We analyzed overall lung cancer incidence and mortality rates. The ratio of early/late stage was obtained by dividing the number of stage I and II cases by the number of stage III and IV diagnosed by year. We investigate changes in level and trend using interrupted time series in STATA12, considering 2011 as the intervention. In addition, we performed a T-test for averages ratios comparing the years 2007-2010 to the years 2012-2015 for the entire lung cancer population and for subgroups by median family income, race and location. Our approach has limitations due to the length of time after trial release and recommendation by the US Preventive Services Task Force (USPSTF) in 2015. We may see a further shift in the coming years because the US Preventive Services Task Force (USPSTF) recommended screening and CMS approved lung cancer CT-screening, both in 2015. We will develop further analysis and models to expand the understanding of the impact of lung cancer screening in the upcoming years.

Results
Although the overall lung cancer rates remained stable during the study period, a significant increase in the ratio of early/late stage was observed following the release of the NLST for the overall lung cancer population (p=0.006) and for the screening age group (p=0.014). The effects of ratio of early/late stage as noted in the overall group persisted for all patient subgroups, except for patients associated with a median income <$40,000, for those who were white, and for the following regions: Detroit Metro, Iowa, Greater and Rural Georgia and Louisiana where no association was found between the release of the NLST and changes in the ratios of early detection. Even more, in some cases there was a decrease in late stage detection. There was no impact on lung cancer mortality in the general lung cancer population or in any patient subgroups.

Conclusions
Since the publication of the NLST in 2011, there has been no impact on lung cancer mortality or overall incidence of lung cancer in the general US population. However, there is a favorable increase in the proportion of early stage lung cancers, depending upon median family income, race and location. Our approach has limitations due to the length of time after trial release and recommendation by the US Preventive Services Task Force (USPSTF) in 2015. We may see a further shift in the coming years because the US Preventive Services Task Force (USPSTF) recommended screening and CMS approved lung cancer CT-screening, both in 2015. We will develop further analysis and models to expand the understanding of the impact of lung cancer screening in the upcoming years.

References
7. Survival (OS) and lung cancer specific survival (LCSS), likely due to finding early-stage Non-Small Cell Lung Cancer (NSCLC). (4,5)
8. Early detection of lung cancer, since this is a curable cancer if diagnosis and treatment are performed in a timely manner.(3)
9. Males and females aged 55-74 years are the primary target population for screening, and the majority of eligible persons have publicly supported health insurance through Medicare or Medicaid or are uninsured. (1,2) There is an increasing effort to improve early detection of lung cancer, since this is a curable cancer if diagnosis and treatment are performed in a timely manner.(3)
10. The National Lung Cancer Screening Trial (NLST) demonstrated improved overall survival (OS) and lung cancer specific survival (LCSS), likely due to finding early-stage Non-Small Cell Lung Cancer (NSCLC). (4,5)
11. Our study investigates the impact of the NLST publication in 2011 on the lung cancer outcomes in the general US Population by assessing the incidence rates, ratio of early/late stage, and lung cancer mortality in the years immediately prior to and following this publication.