Planning for the 2017 Specialty Drug Spend: When Costs are Steep but Pockets are Not Deep

Nicole M. Trask
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/commed_pubs

Part of the Health Economics Commons, Health Law and Policy Commons, Health Policy Commons, Health Services Administration Commons, Health Services Research Commons, Pharmacoconomics and Pharmaceutical Economics Commons, and the Pharmacy Administration, Policy and Regulation Commons

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Commonwealth Medicine Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Planning for the 2017 Specialty Drug Spend:

When Costs are Steep but Pockets are Not Deep

Nicole Trask, PharmD
Clinical Consultant Pharmacist
Clinical Pharmacy Services
University of Massachusetts Medical School
November 16, 2016
Disclosure for Nicole Trask

I have no actual or potential conflict of interest in relation to this presentation.
Objectives

• Identify high-impact specialty pipeline drugs expected to reach the market in 2017-2018

• Summarize efficacy data for high-impact specialty pipeline drugs and indicate their anticipated place in therapy

• Compare specialty pipeline drugs to currently available therapeutic options

• Predict the budgetary impact of specialty pipeline drugs and discuss strategies to mitigate costs
Identifying High-Impact Drugs

Two key drivers

• Clinical impact
 – Efficacy/effectiveness
 – Therapeutic alternatives

• Economic impact
 – Cost
 – Volume
Assessing Clinical Impact

Clinical trial data
• Placebo-controlled, head-to-head studies
• Adverse events
• Potential drug-drug interactions
• Target population
• Patient willingness to use medication

Therapeutic alternatives
• Me-too drug vs. first-in-class
• Market competition
• Consensus guidelines
Assessing Economic Impact

Cost
- AWP/WAC
- Supplemental rebate
- Value-based contracts
- Value assessments (e.g., AHRQ, ICER, PCORI)

Volume
- Prevalence/incidence of disease
- Frequency of administration
- Duration of therapy
Assessing Budget Impact

• **Proactive pharmaceutical pipeline monitoring**
 - Focus on high-cost disease states, specialty drugs (e.g., NASH, hepatitis C, PCSK9 inhibitors, oncology, monoclonal antibodies)

• **Budget impact analysis completed for drugs with potentially high clinical *and* economic impact**
 - Medical claims data to determine prevalence
 - Estimate market share/uptake
 - Cost
Lessons Learned

• **Uptake may not be as quick as anticipated**
 – Skepticism surrounding safety of new treatments
 – Consensus guideline updates take time
 – Clinical inertia
 – Patient willingness to try new medications

• **Recent examples**
 – PCSK9 inhibitors – uptake remains low and slow
 – HCV – 5.1% of MA Medicaid members with HCV had PA requests for sofosbuvir or simeprevir in first 1.5 years on market

HCV=hepatitis C virus, PA=prior authorization
HIGH-IMPACT PIPELINE DRUGS
Non-alcoholic Steatohepatitis (NASH)$^{2-6}$

Sub-group of non-alcoholic fatty liver disease (NAFLD)

- Significant morbidity and mortality
 - 11% of patients progress to cirrhosis
 - 7% of patients develop hepatocellular carcinoma
 - 10-fold increased risk of liver-related death
 - Two-fold increased CV risk

- CV events are the leading cause of death
- Second most common cause of liver disease in adults awaiting liver transplant in US
Non-alcoholic Steatohepatitis (NASH)²-⁶

• Closely associated with obesity, T2DM, dyslipidemia
• Histologic features: hepatic steatosis, hepatic cell injury, inflammation, fibrosis
• Presence and degree of NASH measured by NAFLD activity score (NAS)
 – Steatosis (0 to 3)
 – Lobular inflammation (0 to 3)
 – Hepatocellular ballooning (0 to 2)
Elafiabranor$^{2-3}$

- **Proposed indication:** NASH
- **MOA:** Dual PPAR-α/δ agonist
- PPARs play a key role in metabolic homeostasis, immune-inflammation, and differentiation
- May improve histology in NASH, reduce TG, increase HDL, improve glucose homeostasis
- Reduced markers of liver inflammation in Phase IIa trials

HDL=high-density lipoprotein, MOA=mechanism of action, PPAR=peroxisome proliferator-activated receptor, TG=triglycerides
Elafibranor: Clinical Impact²

Phase II GOLDEN-505 trial: Design

• Randomized, placebo-controlled
• Population: N=274; histologic diagnosis of non-cirrhotic NASH
• Intervention: elafibranor 80 mg or 120 mg by mouth once daily or placebo for 52 weeks
• Primary outcome: reversal of NASH without worsening of fibrosis
 – Absence of ≥1 of 3 components of NASH (i.e., steatosis, ballooning, inflammation)
Elafibranor: Clinical Impact2

Phase II GOLDEN-505 trial: Results

• Resolution of NASH without worsening fibrosis: Protocol-defined definition
 – No difference in response rate overall
 • 23%, 21%, and 17% for elafibranor 80 mg, 120 mg, and placebo, respectively; P=0.280
 – Post-hoc analysis of patients with NAS ≥4: significant difference in response rate
 • 20%, 20%, and 11% for elafibranor 80 mg, 120 mg, and placebo, respectively; P=0.018
Elafibranor: Clinical Impact²

Phase II GOLDEN-505 trial: Results

• Resolution of NASH without worsening fibrosis: Modified* definition
 – Significant improvement in response rate with elafibranor 120 mg vs. placebo
 • All patients: 19% vs. 12% for elafibranor 120 mg and placebo, respectively (P=0.045)
 • Baseline NAS ≥4: 19% vs. 9% for elafibranor 120 mg and placebo, respectively (P=0.013)

*Modified definition of resolution of NASH: disappearance of ballooning together with either disappearance of lobular inflammation or persistence of mild lobular inflammation
Phase II GOLDEN-505 trial: Results

- Patients with NASH resolution on elafibranor 120 mg
 - Improvement in liver fibrosis: \(-0.65\pm0.61\) in responders vs. \(0.10\pm0.98\) in non-responders (P<0.001)
 - Significant improvements in steatosis, ballooning, and inflammation vs. non-responders (P<0.05, P<0.001, and P<0.05, respectively)
Elafibranor: Clinical Impact

Therapeutic alternatives

• No FDA-approved treatments indicated for NASH
• Weight loss
• Treatment of risk factors for CVD
 – Diabetes, dyslipidemia
• Vitamin E is first-line pharmacotherapy*
 – Improves liver histology
• Pioglitazone may be used
 – Lack of long-term safety/efficacy data, potential AEs

*In the absence of diabetes
AE=adverse events, CVD=cardiovascular disease

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Elafibranor: Clinical Impact2,5-6

NASH Pipeline*

- Obetacholic acid (OCA)
 - FXR ligand FDA-approved for primary biliary cholangitis (PBC)
 - ICER evidence rating of “insufficient” based on clinical trial data and unanswered questions
 - Phase IIb FLINT study achieved primary endpoint
 - Unpublished Phase II study in Japanese patients missed primary endpoint

\textsuperscript{*Not an all-inclusive list
FXR=farnesoid X nuclear receptor

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Elafibranor: Economic Impact6-9

Cost

- Cost data not available for elafibranor
- OCA recently approved for PBC
 - \(\sim \$18,000/\text{month}\)* for off-label treatment of NASH
- Supplemental rebate – preferred NASH product
- Value-based contracts – low response rates

*WAC
Elafibranor: Economic Impact

Volume

• Prevalence 3.5% to 5% with ~5% diagnosed
 – ICER estimates 567,000 individuals eligible for treatment
 – ICER estimates low uptake of ~10%

• Duration of treatment indefinite
 – Treatment continues until progression to cirrhosis (liver transplant) or until resolution (F0)
Elafibranor: Budget Impact$^{6-9}$

- **Medicaid plan**
 - $72,000/year for treatment
 - Scenarios
 - 10% uptake: $1.3 to $1.8 million per year
 - All diagnosed patients treated: $12.6 to $18 million per year

- **Timeline**
 - Awarded Fast Track designation
 - Approval anticipated ~2018-2019
Atopic Dermatitis10-12

Clinical features
- Chronic, inflammatory skin condition
- Characterized by rash, scaly patches on skin, intense itching
- May lead to skin infection

Prevalence
- Affects 7\% to 30\% of children and 1\% to 10\% of adults with 95\% of cases starting before age 5
- 50\% of patients with atopic dermatitis in childhood continue to have milder symptoms as an adult
Proposed indication: atopic dermatitis

MOA: MoAB targeting IL-4/IL-13
- IL-4/IL-13 signaling pathway implicated in inflammatory response
- SC injection

If approved, dupilumab would be the first biologic indicated for atopic dermatitis
Phase III LIBERTY AD CHRONOS trial: Design

- Randomized, placebo-controlled
- Population: N=740; adults with moderate-to-severe atopic dermatitis
- Intervention: dupilumab 300 mg SC QW, 300 mg SC Q2W, or placebo
 - All patients received medium potency TCS*
- Primary outcome: proportion of patients achieving IGA 0 or 1 at 16 weeks

* Low potency TCS used for areas where medium potency TCS were deemed unsafe
IGA=Investigator’s Global Assessment Scale, QW=once weekly, Q2W=every two weeks, TCS=topical corticosteroids
Dupilumab: Clinical Impact

Phase III LIBERTY AD CHRONOS trial: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Dupilumab 300 mg QW</th>
<th>Dupilumab 300 mg Q2W</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of patients with IGA 0 or 1 at 16 weeks</td>
<td>39% (P<0.0001)</td>
<td>39% (P<0.0001)</td>
<td>12%</td>
</tr>
<tr>
<td>Proportion of patients with EASI-75 at 16 weeks</td>
<td>64% (P<0.0001)</td>
<td>69% (P<0.0001)</td>
<td>23%</td>
</tr>
</tbody>
</table>

EASI-75=75% reduction in Eczema Activity and Severity Index score, QW=once weekly, Q2W=every two weeks

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Dupilumab: Clinical Impact

Phase III LIBERTY AD CHRONOS trial: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Dupilumab 300 mg QW</th>
<th>Dupilumab 300 mg Q2W</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary endpoints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of patients with IGA 0 or 1 at 52 weeks</td>
<td>40% (P<0.0001)</td>
<td>36% (P<0.0001)</td>
<td>12.5%</td>
</tr>
<tr>
<td>Proportion of patients with EASI-75 at 52 weeks</td>
<td>64% (P<0.0001)</td>
<td>65% (P<0.0001)</td>
<td>22%</td>
</tr>
</tbody>
</table>

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Therapeutic alternatives

- TCS, emollients
- Topical calcineurin inhibitors
 - e.g., tacrolimus, pimecrolimus
- Phototherapy
- Systemic immunosuppressant therapy
 - e.g., cyclosporine
- First generation antihistamines may help improve sleep
Dupilumab: Clinical Impact11,13-15

Potential Advantages
- Significant improvements in outcomes vs. SOC
- Potential for Q2W dosing
- May be the first targeted therapy for underlying cause of disease
- Well-tolerated safety profile

Potential Disadvantages
- Current SOC is much less costly
- SC administration for a disease historically treated topically
Dupilumab: Economic Impact

Cost

• Cost data not available
• Industry news blasts suggest $30,000/year
• Supplemental rebate – limited market competition
• Value-based contracts – some subjectivity in treatment outcomes, monitoring issues
Dupilumab: Economic Impact17-20

Volume

- Prevalence 10.7% of children, 10.2% of adults
 - Estimated that 33% of children with atopic dermatitis have moderate-to-severe disease
 - 7 to 8 million adults in the US; approximately 1.6 million with uncontrolled disease per physician survey
- Duration of treatment is indefinite
- Other key facts
 - Also being studied in asthma, nasal polyposis
Dupilumab: Budget Impact

Medicaid plan
- Up to $30,000/year for treatment
- Scenarios
 - 10% uptake: $2 to $2.5 million/year
 - All uncontrolled patients treated: $19.8 to $24.8 million/year
Dupilumab: Budget Impact

Timeline

• Awarded Breakthrough Therapy designation
• Regulatory submission completed Q3 2016
• FDA decision may be expected in the first half of 2017
Multiple Sclerosis²²⁻²⁵

Clinical features
- Chronic, immune-mediated disease
- Immune system attacks myelin, nerve fibers
- Characterized by sensory disturbances; numbness/weakness, vision loss, pain, tremor, fatigue, etc.
- Four subtypes: RRMS, PPMS, SPMS, PRMS

Prevalence
- Affects 400,000 people in the US
- More common in women than men
Ocrelizumab

- Proposed indication: Relapsing MS, PPMS
- MOA: MoAB that selectively targets CD20-positive B cells
 - CD20-positive B cells are key contributors to myelin and axonal damage
 - Ocrelizumab binds to CD20 cell surface proteins expressed on B cells (not stem or plasma cells), preserving key functions of the immune system
Ocrelizumab: Clinical Impact

Phase III OPERA I and II trials: Design

- Randomized, active-controlled
- Population: N=828; patients with RRMS
- Intervention: ocrelizumab 600 mg IV infusion every six months or interferon β-1a 44 mcg SC thrice weekly for two years
- Primary outcomes: ARR at 96 weeks

ARR=annualized relapse rate, IV=intravenous
Ocrelizumab: Clinical Impact

Phase III OPERA I and II trials: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>IFN β-1a</th>
<th>Ocrelizumab</th>
<th>Relative reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR at 96 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERA I</td>
<td>0.292</td>
<td>0.156</td>
<td>46% (P<0.0001)</td>
</tr>
<tr>
<td>OPERA II</td>
<td>0.290</td>
<td>0.155</td>
<td>47% (P<0.0001)</td>
</tr>
</tbody>
</table>

IFN = interferon

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Ocrelizumab: Clinical Impact

Phase III OPERA I and II trials: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Ocrelizumab</th>
<th>IFN β-1a</th>
<th>Relative reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 GdE lesions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERA I</td>
<td>0.016</td>
<td>0.286</td>
<td>94% (P<0.0001)</td>
</tr>
<tr>
<td>OPERA II</td>
<td>0.021</td>
<td>0.416</td>
<td>95% (P<0.0001)</td>
</tr>
</tbody>
</table>

GdE = gadolinium-enhancing lesions

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Ocrelizumab: Clinical Impact26-27

Phase III ORATORIO trial: Design

- Randomized, placebo-controlled
- Population: N=732; patients with PPMS
- Intervention: ocrelizumab 600 mg IV infusion every six months or placebo (minimum of 5 doses)
 - All patients pre-medicated with methylprednisolone
- Primary outcomes: progression of clinical disability
Ocrelizumab: Clinical Impact\(^{26-27}\)

Phase III ORATORIO trial: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Risk reduction (ocrelizumab vs. placebo)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Endpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of progression of clinical disability sustained for ≥12 weeks (per EDSS)</td>
<td>24%</td>
<td>0.0321</td>
</tr>
<tr>
<td>Secondary Endpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of progression of clinical disability sustained for ≥24 weeks (per EDSS)</td>
<td>25%</td>
<td>0.0365</td>
</tr>
</tbody>
</table>

EDSS = Expanded Disability Status Scale

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Ocrelizumab: Clinical Impact26-27

Phase III ORATORIO trial: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Ocrelizumab</th>
<th>Placebo</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Endpoints at 120 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from baseline in time to walk 25 feet</td>
<td>39%</td>
<td>55%</td>
<td>0.04</td>
</tr>
<tr>
<td>Change from baseline in T2 lesion volume</td>
<td>-3.4%</td>
<td>7.4%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Rate of brain volume loss (from baseline)</td>
<td>-0.9%</td>
<td>-1.1%</td>
<td>0.02</td>
</tr>
</tbody>
</table>

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Ocrelizumab: Clinical Impact

Therapeutic alternatives

<table>
<thead>
<tr>
<th>Injectable</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN β-1a</td>
<td>Fingolimod</td>
</tr>
<tr>
<td>IFN β-1b</td>
<td>Teriflunomide</td>
</tr>
<tr>
<td>Daclizumab</td>
<td>Dimethyl fumarate</td>
</tr>
<tr>
<td>Glatiramer acetate</td>
<td></td>
</tr>
<tr>
<td>Natalizumab</td>
<td></td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td></td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td></td>
</tr>
</tbody>
</table>

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Ocrelizumab: Clinical Impact

MS Pipeline

- Ozanimod
 - Oral, S1P receptor 1 and 5 modulator
 - Selectivity may avoid AEs associated with fingolimod
 - RRMS: ↓MRI brain lesions by 86% and ↓ARR* by 53% vs. placebo
 - Regulatory submission for MS anticipated 2017-2018

*Not statistically powered to detect significance
S1P=sphingosine 1-phosphate
Ocrelizumab: Clinical Impact

MS Pipeline*

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>MOA</th>
<th>Proposed Indication(s)</th>
<th>Anticipated Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laquinimod</td>
<td>Immuno-modulator</td>
<td>RRMS</td>
<td>2017</td>
</tr>
<tr>
<td>Siponimod</td>
<td>S1P receptor 1 and 5 inhibitor</td>
<td>RRMS, PPMS, SPMS</td>
<td>2017</td>
</tr>
<tr>
<td>Ponesimod</td>
<td>S1P receptor 1 inhibitor</td>
<td>RRMS</td>
<td>2018</td>
</tr>
</tbody>
</table>

*Not an all-inclusive list
Ocrelizumab: Clinical Impact \(^{27,33-36}\)

Potential Advantages

- May be the first FDA-approved treatment for PPMS
- Significantly reduced risk of disease progression in difficult-to-treat PPMS
- Dosed every six months vs. every month with natalizumab

Potential Disadvantages

- Higher doses in Phase III RA trial were associated with serious, opportunistic infections
- Development in RA, LE halted due to incidence of opportunistic infection and death in clinical trials
- Lacking long-term safety data

LE=lupus erythematosus, RA=rheumatoid arthritis

November 16, 2016 Planning for the 2017 Specialty Drug Spend
Ocrelizumab: Economic Impact32,36

Cost

- Cost data not available
 - Currently available injectable agents range in cost from $1,000 to $106,000 per year (most ~$80,000)
- Supplemental rebate – limited market competition for PPMS; may select preferred RRMS agent
- Value-based contracts – reduction in risk of progression (PPMS), reduction in ARR (RRMS)
Ocrelizumab: Economic Impact

Volume

- Prevalence 90 per 100,000 individuals in US
- Duration: chronic condition; treatment is indefinite
- Other key facts
 - May be the first approved treatment for PPMS
 - Several injectable, oral options on the market for RRMS
 - Injectable agents ~70% of the RRMS market
Ocrelizumab: Budget Impact

- Medicaid plan
 - Approximately $80,000/year for treatment
 - $4.8 million/year
- Timeline
 - FDA decision expected 12/28/2016

100,000 covered lives

90 patients with MS

60 patients may require treatment
Plaque Psoriasis38,39

Clinical features
- Chronic, immune-mediated disease
- Characterized by infiltration of inflammatory cells into the skin, excessive keratinocyte proliferation, and development of raised, scaly skin (plaques)
- ↑ incidence of lymphoma, heart disease, obesity, T2DM, metabolic syndrome

Prevalence
- Affects ~6 million people in the US
- Most common form of psoriasis
Guselkumab40

- **Proposed indication:** plaque psoriasis
- **MOA:** fully-human MoAB that inhibits IL-23
 - Specifically targets the p19 subunit of IL-23
 (p19 mRNA elevated in psoriatic lesions)
 - Th17/IL-23 pathway key in amplification phase of psoriasis
 - SC injection

\textit{mRNA}=messenger ribonucleic acid, \textit{Th}=T helper cell
Guselkumab: Clinical Impact41,42

Phase III VOYAGE 1 trial: Design

• Randomized, placebo- and active-controlled
• Population: N=837; adults with moderate-to-severe plaque psoriasis
• Intervention:
 – Placebo at weeks 0, 4, 12 then guselkumab at weeks 16 and 20 and Q8W thereafter
 – Guselkumab 100 mg SC at weeks 0, 4, 12 then Q8W
 – Adalimumab 80 mg SC at week 0, 40 mg at week 1, then Q2W thereafter
• Primary outcomes: PASI90 response, IGA of 0 or 1 at 16 weeks vs. placebo

41,42IGA=Investigator’s Global Assessment, PASI90=90\% improvement in Psoriasis Area Sensitivity Index, Q2W=every two weeks, Q8W=every eight weeks
Guselkumab: Clinical Impact41,42

Phase III VOYAGE 1 trial: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Guselkumab</th>
<th>Placebo</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Endpoints vs. Placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of patients achieving PASI90 at 16 weeks</td>
<td>73.3%</td>
<td>2.9%</td>
<td><0.001</td>
</tr>
<tr>
<td>Proportion of patients achieving IGA 0 or 1 at 16 weeks</td>
<td>85.1%</td>
<td>6.9%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Outcome

- Proportion of patients achieving PASI90 at 16 weeks
- Proportion of patients achieving IGA 0 or 1 at 16 weeks

Guselkumab

- 73.3%
- 85.1%

Placebo

- 2.9%
- 6.9%

P-value

- <0.001
- <0.001
Guselkumab: Clinical Impact\(^{41,42}\)

Phase III VOYAGE 1 trial: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Guselkumab</th>
<th>Adalimumab</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Endpoints vs. Adalimumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of patients achieving PASI90 at 16 weeks</td>
<td>73.3%</td>
<td>49.7%</td>
<td><0.001</td>
</tr>
<tr>
<td>Proportion of patients achieving IGA 0 or 1 at 16 weeks</td>
<td>85.1%</td>
<td>65.9%</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Guselkumab: Clinical Impact43-47

Therapeutic alternatives

- **Topical**
 - Emollients, keratolytics, corticosteroids, etc.

- **Systemic**
 - Traditional DMARDs
 - MTX, sulfasalazine, cyclosporine, tacrolimus, azathioprine, hydroxyurea, leflunomide, etc.
 - Biologic DMARDs
 - Adalimumab*, etanercept*, infliximab, ixekizumab, secukinumab, ustekinumab*

- **Phototherapy**

*Recommended as first-line treatment option per consensus guidelines
DMARD=disease-modifying antirheumatic drug, MTX=methotrexate
Guselkumab: Clinical Impact

Plaque Psoriasis Pipeline*

- Brodalumab
 - Investigational fully-human IL-17 receptor MoAB
 - SC injection
 - FDA AdComm voted 18-0 in favor of approval with conditions related to product labeling, post-marketing/risk management requirements
 - Safety concerns: increased risk of suicidal ideation and behavior, serious infections
 - FDA decision expected 11/16/2016

*Not an all-inclusive list
AdComm=Advisory Committee
Guselkumab: Clinical Impact

Plaque Psoriasis Pipeline*

• Tildrakizumab
 – Investigational fully-human IL-23 receptor antibody targeting p19 subunit
 – SC injection
 – Demonstrated superiority vs. placebo and etanercept in Phase III trials†
 • PASI75 response at week 12
 • PGA response (score of 0 or 1 with ≥2 point reduction)
 – BLA anticipated late 2016

*Not an all-inclusive list
†Tildrakizumab 100 mg was superior to etanercept for PASI75, only PASI75=75% improvement in Psoriasis Area Sensitivity Index
Guselkumab: Clinical Impact

Potential Advantages
- Demonstrated superior efficacy vs. adalimumab, current market leader
- Similar safety profile compared to adalimumab in clinical trials
- Ongoing clinical trial comparing guselkumab to ustekinumab

Potential Disadvantages
- Biosimilars for market leaders, including adalimumab
- Crowded plaque psoriasis market
- Brodalumab may reach market first
Cost

- Cost data not available
 - Adalimumab, etanercept, and ustekinumab cost ~$37,000 to $57,000 per year
- Supplemental rebate – identify preferred IL-23 agent
 - Crowded plaque psoriasis market, biosimilars
- Value-based contracts – achievement of PASI 75, PGA response
Guselkumab: Economic Impact38,39

Volume

- Prevalence: 2% of the US population has psoriasis; 90% of patients with psoriasis have plaque psoriasis
 - Approximately 20% have moderate-to-severe disease
- Duration: chronic condition; duration of treatment is indefinite
- Other key facts
 - Given superior efficacy vs. adalimumab, may become a first-line treatment option
 - Also being studied in psoriatic arthritis
Guselkumab: Budget Impact

Medicaid plan
- Approximately $50,000/year for treatment
- $6 million/year

Timeline
- Regulatory submission anticipated Q4 2016
Clinical features

- May be episodic (0 to 14 headache days/month) or chronic (≥15 headache days/month)
- Characterized by incapacitating head pain, physical impairment; commonly associated with nausea, vomiting, and sound/sensory disturbances

Prevalence

- Affects ~3 to 7 million people in the US
- Health care and lost productivity costs associated with migraine ~$36 billion/year in the US
Erenumab53-55

- Proposed indication: prevention of episodic migraine, chronic migraine
- MOA: fully-human MoAB targeting CGRP receptor
 - CGRP receptors are thought to transmit signals that can cause incapacitating pain
 - Blocking CGRP reduces vasodilation and neurogenic inflammation associated with migraine

\(\text{CGRP} = \text{calcitonin-gene related peptide}\)
Erenumab: Clinical Impact53,54

Phase III ARISE trial: Design

- Randomized, placebo-controlled
- Population: N=577; patients with episodic migraine
 - Average of 8 migraines/month at baseline
- Intervention: erenumab 70 mg SC monthly vs. placebo
- Primary outcome: change in monthly migraine days from baseline to the last four weeks of the 12-week treatment phase
Erenumab: Clinical Impact56

Phase III ARISE trial: Results

• Statistically significant reduction in monthly migraine days from baseline
 – 2.9-day reduction in the erenumab treatment arm vs. 1.8-day reduction in the placebo arm
Erenumab: Clinical Impact53,54

Phase II 20120295 study: Design

- Randomized, placebo-controlled
- Population: N=667; patients with chronic migraine
 - Average of 18 migraines/month at baseline
- Intervention: erenumab 140 mg SC or 70 mg SC monthly vs. placebo
- Primary outcome: change in monthly migraine days from baseline to the last four weeks of the 12-week treatment phase
Erenumab: Clinical Impact56

Phase II 20120295 study: Results

- Statistically significant reduction in monthly migraine days from baseline
 - 6.6-day reduction in the erenumab treatment arms vs. 4.2-day reduction in the placebo arm
Erenumab: Clinical Impact57-60

Therapeutic alternatives

- **Acute treatment**
 - NSAIDs
 - Combination analgesics (e.g., acetaminophen/aspirin/caffeine)
 - Triptans

- **Prophylactic treatment**
 - Amitriptyline
 - Calcium channel blockers
 - Beta blockers
 - Antiepileptics
 - Onabotulinum toxin A
Erenumab: Clinical Impact\(^{61-64}\)

CGRP Pipeline*

<table>
<thead>
<tr>
<th>Generic/Investigational Name</th>
<th>Stage of Development</th>
<th>Other Key Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD403</td>
<td>Phase III</td>
<td>IV infusion Q3M; also being studied as SC, IM injection</td>
</tr>
<tr>
<td>Galcanezumab</td>
<td>Phase III</td>
<td>SC injection monthly</td>
</tr>
<tr>
<td>TEV-48125</td>
<td>Phase III</td>
<td>SC injection monthly</td>
</tr>
</tbody>
</table>

*Not an all-inclusive list

IM=intramuscular, Q3M=every three months

November 16, 2016

Planning for the 2017 Specialty Drug Spend
Erenumab: Clinical Impact \(^{53-57,60-65}\)

Potential Advantages
- May be the first targeted therapy for prevention of migraine
- Similar safety profile vs. placebo in clinical trials
- CGRP agents may have similar efficacy but improved safety vs. standard oral preventative therapies

Potential Disadvantages
- Lacking long-term safety data to understand impact of blocking CGRP receptor
- SC administration for a condition typically treated with oral medications
Erenumab: Economic Impact

Cost

- Cost data not available
- Industry news blasts suggest ~$14,000/year
- Supplemental rebate – select preferred CGRP agent
- Value-based contracts – reduction in headache days/month, patient adherence measures
Erenumab: Economic Impact65,67,68

Volume

- Prevalence 14.9% of individuals in US
 - Approximately 30% of patients with migraine have used preventative therapies
- Duration: chronic condition; treatment is indefinite
 - Preventative therapies historically associated with poor adherence
 - Non-adherence after six months ~65% to 75%
Erenumab: Budget Impact65,67-69

- Medicaid plan
 - $14,000/year for treatment
 - Scenarios
 - 10% uptake: $6.3 million/year
 - All candidates for preventative therapy treated: $62.6 million/year

- Timeline
 - Approval anticipated ~2018-2019
Conclusions

- Biologics in development may offer first FDA-approved targeted treatments for NASH, atopic dermatitis
- Specialty pipeline agents may offer important therapeutic, safety advantages
- Speciality pipeline agents in existing therapeutic classes represent opportunities for supplemental rebate, value-based contracts
- Proactive pipeline monitoring and a solid understanding of plan membership are key to anticipating budget impact of new drugs
QUESTIONS?