Uniform nomenclature for the mitochondrial contact site and cristae organizing system

Nikolaus Pfanner

University of Freiburg

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cellbiology_pp

Part of the Cell Biology Commons

Repository Citation


Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Cell and Developmental Biology Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Uniform nomenclature for the mitochondrial contact site and cristae organizing system

Nikolaus Pfanner,1,2 Martin van der Laan,1,2 Paolo Amati,3 Roderick A. Capaldi,4 Amy A. Caudy,5,6 Agnieszka Chacinska,7 Manjula Darshi,8 Markus Deckers,11 Suzanne Hoppins,12 Tateo Icho,13 Stefan Jakobs,14,15 Jianguo Ji,16 Vera Kozjak-Pavlovic,17 Chris Meisinger,1,2 Paul R. Odgren,18 Sang Ki Park,19 Peter Rehiling,1,13 Andreas S. Reichert,20,21 M. Saeed Sheikh,22 Susan S. Taylor,8,9,10 Nobuo Tsuchida,23 Alexander M. van der Bliek,24 Ida J. van der Klei,25 Jonathan S. Weissman,26,27 Benedikt Westermann,28 Jiping Zha,29 Walter Neupert,30 and Jodi Nunnari31

1Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, and 2BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
2Pasteur Institute of Rome, University of Rome at Sapienza, 00161 Rome, Italy
3Metabolic Profiling, Inc., Eugene, OR 97401
4Donnelly Centre for Cellular and Biomolecular Research and 5Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
5The International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
6Howard Hughes Medical Institute, 7Department of Pharmacology, and 8Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
7Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, and 2BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
8The Rockefeller University Press

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and communication of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.

Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2006; Davies et al., 2011). Tubular openings, termed cristae junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites

Correspondence to Nikolaus Pfanner: nikolaus.pfanner@biochemie.uni-freiburg.de; Walter Neupert: neupert@biochem.mpg.de; or Jodi Nunnari: jmnunnari@ucdavis.edu

© 2014 Pfanner et al. This article is distributed under the terms of an Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-ns/3.0/).
between outer membrane and inner boundary membrane promote import of preproteins, metabolite channeling, lipid transport, and membrane dynamics (Frey and Mannella, 2000; Sesaki and Jensen, 2004; Hoppins et al., 2007, 2011; Neupert and Herrmann, 2007; Chacinska et al., 2009; Connerth et al., 2012; van der Laan et al., 2012).

To understand the complex architecture of mitochondria, it will be crucial to identify the molecular machineries that control the interaction between mitochondrial outer and inner membranes and the characteristic organization of the inner membrane. A convergence of independent studies led to the identification of a large heterooligomeric protein complex of the mitochondrial inner membrane conserved from yeast to humans that plays crucial roles in the maintenance of cristae junctions, inner membrane architecture, and formation of contact sites to the outer membrane (Fig. 1 A). Several names were used by different research groups to describe the complex, including mitochondrial contact site (MICOS) complex, mitochondrial inner membrane organizing system (MINOS), mitochondrial organizing structure (MitOS), Mitofilin complex, or Fcj1 (formation of cristae junction protein 1) complex (Table 1; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). Mitofilin, also termed Fcj1, was the first component identified (Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005) and was observed enriched at cristae junctions (Rabl et al., 2009). Mutants of Mitofilin/Fcj1 as well as of other MICOS/MINOS/MitOS subunits show a strikingly altered inner membrane architecture. They lose cristae junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (Table 1).
name MiccX will be used in this organism, but the number will not be changed. The use of capital and small letters as well as of italics will follow species-specific conventions, e.g., in budding yeast (Saccharomyces cerevisiae), Mic60 will be used for the protein, and MIC60 will be used for the gene. (c) The current names of MICOS genes and proteins in databases will be renamed according to the uniform nomenclature. This includes the names of mutants when they contain the name of a MICOS gene or protein, e.g., fcj1Δ mutant cells will be renamed to mic60Δ mutant cells. (d) In case several isoforms of a MICOS subunit are present in an organism, this will usually be indicated by -1, -2, etc. (e.g., Mic60-1 and Mic60-2 or MICC60-1 and MICC60-2). When species-specific conventions strictly require the use of A, B, or I, II, etc. for designation of isoforms, these additions will be used. (e) In case new subunits of MICOS will be identified, they will be named MicY. The number Y will be the molecular mass of the identified mature protein in kilodaltons. The same number will be used for orthologues identified in other organisms. (f) The names Mic14, Mic17, and Mic23 (mitochondrial intermembrane space cysteine motif proteins) that are currently used for three non-MICOS yeast proteins (Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CX3C motif proteins) in the Saccharomyces Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.

The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.

Submitted: 2 January 2014
Accepted: 6 March 2014

References


Table 1. New nomenclature of MICOS

<table>
<thead>
<tr>
<th>Standard name</th>
<th>Former names</th>
<th>Yeast ORF</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICOS</td>
<td>MINOS, MtOS, MIB, Mitofilin complex, and Fcj1 complex</td>
<td></td>
<td>Xie et al., 2007; Rabl et al., 2009; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013</td>
</tr>
<tr>
<td>Subunits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mic10</td>
<td>Msc10, Mio10, Mio1, and MINOS1</td>
<td>YCL057C-A</td>
<td>Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013</td>
</tr>
<tr>
<td>Mic12</td>
<td>Aim5, Fmp51, and Msc12</td>
<td>YBR262C</td>
<td>Hess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013</td>
</tr>
<tr>
<td>Mic19</td>
<td>Aim13, Msc19, CHCH3, CHCHD3, and MINOS3</td>
<td>YFR011C</td>
<td>Xie et al., 2007; Hess et al., 2009; Darshi et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013</td>
</tr>
<tr>
<td>Mic25 (metazoan homologue)</td>
<td>CHCHD6 and CHCM1</td>
<td></td>
<td>Xie et al., 2007; An et al., 2012</td>
</tr>
<tr>
<td>Mic26</td>
<td>Msc29, Mio27, and Mos2</td>
<td>YGR235C</td>
<td>Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011</td>
</tr>
<tr>
<td>Mic27</td>
<td>Aim37, Msc27, APOOL, and MOMA-1</td>
<td>YNL100W</td>
<td>Hess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013</td>
</tr>
<tr>
<td>Mic60</td>
<td>Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMAT, and MINOS2</td>
<td>YKR016W</td>
<td>Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; König et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013</td>
</tr>
</tbody>
</table>

APOOL, apolipoprotein O–like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.


