
observed differences in both the timing and levels of markers of

mesoderm and endoderm (Figure 4A; e.g., FoxA2,Gata4, Sox17,

T, Hand1, and Flk1), expanding on our preliminary analyses (Fig-

ure 3E). Next, we used k-means clustering to identify groups of

genes induced early or late during differentiation in Tip60fl/+ con-

trol cells and characterized the effects of the KAT mutation on

their induction. We observed 1,338 genes of this type that mainly

fall into three clusters based on the timing of their expression

peak (Figure 4B). In Tip60ci/ci cells, we observed reduced or

delayed induction of numerous genes with key roles in differen-

Figure 3. The Tip60 Catalytic Activity Is

Required for Differentiation and Post-im-

plantation Development

(A) Genotypes of embryos from Tip60ci/+ in-

tercrosses at different developmental stages. ND,

not determined.

(B) Images of E10.5 embryos of the indicated ge-

notypes. Scale bar, 1 mm.

(C) EB formation assay comparing EB morphology

in Tip60ci/ci mutant ESCs to Tip60fl/+ and Tip60 KD

controls. Scale bars, 400 mm.

(D) Quantification of EB size in indicated mutants

and controls (n = 49 per genotype). Boxes range

from the 25th to the 75th percentile, the middle lines

indicate the median, and the whiskers indicate

the lesser of either the extreme (maximum or min-

imum) value or 1.5 times the interquartile range

(***p < 0.001, calculated using a two-sided t test).

(E) qRT-PCR analysis of indicated germ layer

markers during a time course of EB differentiation.

(F and G) Whole-mount in situ hybridization in E6.5

and E7.5 mouse embryos staining for T transcript.

Scale bars, 100 mm (F) or 250 mm (G).

tiation, including developmental tran-

scription factors and mediators of growth

factor signaling, within each of the three

clusters (Figure 4B).

To test whether impaired induction of

key signaling proteins hindered activation

of their downstream targets, we examined

activation of the FGF/MEK/ERK (fibroblast

growth factor/mitogen-activated protein

kinase kinase/extracellular signal-regu-

lated kinase) and TGF-b (transforming

growth factor b) pathways using anti-

bodies recognizing the phosphorylated

(and activated) forms of ERK1/2 and

Smad2/3, respectively (Tsang and Dawid,

2004;Whitman andMercola, 2001). These

factors act downstream of FGF and BMP

(bone morphogenetic protein) signaling

in differentiating ESCs and embryos and

are critical for differentiation (Sui et al.,

2013). Although Smad2/3 phosphoryla-

tion was unaltered in differentiating

Tip60ci/ci ESCs, we observed impaired

ERK phosphorylation in these mutants af-

ter 6 days of differentiation (Figure 4C).

Together, these data suggest that the differentiation defect

observed in Tip60ci/ci ESCs is due to at least two overlapping

defects: delayed or reduced activation of ERK and impaired in-

duction of key developmental transcription factors.

DISCUSSION

Here, we showed that Tip60 functions in ESC gene regulation

and self-renewal, aswell as pre-implantation development, inde-

pendently of its KAT activity. This finding was unexpected,
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because Tip60 depletion or knockout leads to a self-renewal

defect in ESCs and pre-implantation lethality in mice (Fazzio

et al., 2008a; Hu et al., 2009). Furthermore, KAT-impaired mu-

tants of esa1, the yeast homolog of Tip60, are severely growth

impaired (Selleck et al., 2005), suggesting that the critical cellular

functions of this KAT are dependent on its acetylation activity.

The fact that Tip60 is largely a repressor of transcription in

ESCs (Fazzio et al., 2008a), and that this repressive function is in-

dependent of its KAT activity, suggests that Tip60 regulates ESC

gene expression in amanner that is distinct from other well-stud-

ied KATs, at least in part. Consistent with its role as a broadly

acting repressor of transcription in ESCs, we found that Tip60

functions by a KAT-independent mechanism to limit chromatin

accessibility directly over its promoter-proximal binding sites at

many target genes. Additional studies will be necessary to deter-

mine whether Tip60 also performs this function in somatic cell

types.

In contrast, the Tip60 KAT activity is essential during ESC dif-

ferentiation and post-implantation development. Consequently,

these findings demonstrate separable, essential functions of

Tip60: its KAT-independent function is sufficient for Tip60’s

essential role in ESC self-renewal and pre-implantation develop-

ment, and its KAT-dependent function is required for post-

Figure 4. Delayed and Impaired Expression

of Developmental Regulators in Differenti-

ating Tip60ci/ci ESCs

(A) Heatmap indicating induction kinetics of

each germ layer markers during differentiation of

Tip60fl/+ controls or Tip60ci/cimutant ESCs. FPKM,

fragments Per kilobase of transcript per million

mapped reads.

(B) K-means clustering (K = 9) of differentially ex-

pressed genes (jlog2 (fold change)j > 0.7; multiple-

testing-adjustedpvalue<0.05) inTip60fl/+controls

or Tip60ci/ci mutant ESCs during the differentiation

time course. Large upregulated clusters are noted.

Key regulatory proteins with impaired induction in

Tip60ci/ci mutant ESCs are highlighted.

(C) Western blots (one of two independent ex-

periments with similar results) of phosphorylated

and total Smad2/3 and Erk1/2 during differentia-

tion in Tip60fl/+ or Tip60ci/ci ESCs.

(D) Model indicating the KAT-independent role of

Tip60 in ESC self-renewal and gene regulation, as

well as pre-implantation development, and the

KAT-dependent role of Tip60 in differentiation and

post-implantation development. See Discussion

for additional details. WT, wild-type.

implantation development and ESC differ-

entiation. Interestingly, we found that the

ATP-dependent histone exchange activity

of p400 was also dispensable for gene

regulation and self-renewal in ESCs,

revealing that the Tip60-p400 complex re-

presses differentiation genes in ESCs

independently of its known chromatin-re-

modeling activities (Figure 4D). These

findings necessitate a re-evaluation of

current models of gene regulation by this essential chromatin

regulatory complex.

What is the role of the Tip60 KAT activity during development?

Given the defect of KAT-deficient ESCs and embryos in lineage

specification, one possibility is that histone acetylation at differ-

entiation genes in ESCs (as observed previously; Fazzio et al.,

2008a) facilitates their upregulation when differentiation is

induced. This provides a potential explanation for the counterin-

tuitive role of Tip60 in the repression of differentiation genes in

ESCs: occupancy of Tip60-p400 at differentiation gene pro-

moters helps repress these genes by reducing chromatin acces-

sibility, while acetylation at these loci may allow more rapid

induction after binding of differentiation-specific transcription

factors. Together, these data show that not all functions of

Tip60 are reliant on its KAT activity, and they raise the possibility

that KAT-independent gene regulation by Tip60 plays important

roles in additional cell types.

EXPERIMENTAL PROCEDURES

Antibodies

Antibodies used in this study were as follows: p400 (A300-541A; Bethyl

Laboratories); StainAlive SSEA-1 (09-0067; Stemgent); Smad2/3 (8685; Cell
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Signaling Technologies); Phospho-Smad2/3 (8828; Cell Signaling Technolo-

gies); Erk1/2 (9102; Cell Signaling Technologies); Phospho-Erk1/2 (9101;

Cell Signaling Technologies); H2AZ (ab4174; Abcam); Acetyl-H4 (06-598;

Millipore); FLAG-M2 (F1804; Sigma); IgG ([immunoglobulin G] ab37415;

Abcam); and b-actin (A5316; Sigma).

Cell Lines

Mouse ESC lines were derived from E14 (129/Ola) (Hooper et al., 1987) and

grown as described previously (Chen et al., 2013). Tip60ci/ciESCswere derived

from floxed Tip60-H3F cells (Chen et al., 2013) by introduction of Cre recom-

binase (Addgene, 20781) to loop out a fused version of wild-type Tip60 exons

11–14, leaving a mutant exon 11 that harbors two substitution mutations

(Q377E and G380E) that eliminate acetyl-CoA binding (Ikura et al., 2000)

(Figure S1A).

Catalytically inactive mutants of p400 (Ep400ci/ci) were generated using ho-

mologous recombination stimulated by CRISPR (clustered regularly inter-

spaced short palindromic repeats)/Cas9-mediated cleavage (Cong et al.,

2013; Mali et al., 2013). A repair template (Table S3) was synthesized (Inte-

grated DNA Technologies), cloned into pCR2.1, and introduced together

with the CRISPR /Cas9 vector (a variant of plasmid pX330 that expresses

puromycin resistance). The Ep400hypo mutant line, described previously

(Chen et al., 2015), was generated using the same CRISPR/Cas9 construct,

but without the repair template, resulting in a homozygous 135-bp in-frame

deletion that disrupts the ATPase domain and results in lower expression of

p400 protein (Figure S1E).

ESC Differentiation

EBs for growth/morphology assays were formed using hanging drops contain-

ing 100 cells in 10 ml of differentiation medium. Morphology was examined

after 48 hr. For gene expression assays, 106 ESCs were plated on non-

adherent plates for 48 hr to form EBs and then transferred into gelatinized

six-well plates at a low density. Cells were harvested using TRIzol reagent

(Invitrogen) at indicated time points. RNA was prepared, and qRT-PCR was

performed as described previously (Chen et al., 2013), using primers listed

in Table S1.

Cell Staining

105 ESCs were grown on gelatin-coated six-well plates for 48 hr. AP staining

was performed using a kit (EMD Millipore, SCR004), following the manufac-

turers’ guidelines. SSEA-1 staining of live ESCs was also performed per the

manufacturers’ instructions (Stemgent, 09-0067).

Tip60-p400 Purification

Tip60-p400 complex was purified from nuclear extracts of wild-type, Tip60ci/ci,

p400ci/ci, and p400hypo cells with endogenous 63his/33FLAG tags at the

Tip60 locus, as described previously (Chen et al., 2013). Purified proteins

were separated on SDS-PAGE gels, and silver staining was performed using

a Silver Staining Kit (ThermoFisher, LC6100).

Western Blotting

30 mg of nuclear extract per lane (prepared using the NE-PER Kit;

ThermoFisher, 78833) were used for western blotting.

Generation of Tip60ci/ci Mice

Tip60ci/+ heterozygous mice were generated by crossing Tip60 floxed mice

(Chen et al., 2013) with the allele described earlier with Tg(EIIa-cre) mice, which

broadly express Cre recombinase (Dooley et al., 1989; Lakso et al., 1996).

Mice were genotyped by PCR with primers listed in Table S2. Tip60ci/+ mice

were maintained as heterozygotes on an inbred FVB/N background and inter-

crossed to generate Tip60+/+, Tip60ci/+, and Tip60ci/ci embryos. Animal studies

were performed in accordance with the guidelines of the Institutional Animal

Care and Use Committee at the University of Massachusetts Medical School

(A-2165) and NIH.

RNA In Situ Hybridization

Whole-mount in situ hybridization was performed as previously described

(Rivera-Pérez andMagnuson, 2005), using a full-length cDNA probe of T (Herr-

mann, 1991). Embryos were genotyped after staining by PCR, using primers

listed in Table S2.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation and deep sequencing were performed

as described previously (Chen et al., 2013; Hainer et al., 2015). Chro-

matin immunoprecipitation (ChIP)-qPCR was performed using SYBR

FAST (KAPA Biosystems), with primers described previously (Fazzio et al.,

2008a).

RNA-Seq

Strand-specific library construction and RNA-seq were performed by Applied

Biological Materials and the UCLA Clinical Microarray Core for ESCs and

differentiating ESCs, respectively. Data analysis is described in the Supple-

mental Experimental Procedures.

ATAC Sequencing

ATAC sequencing (ATAC-seq) was performed essentially as described previ-

ously (Buenrostro et al., 2013, 2015). Two independent ATAC reactions per

biological replicate were performed, using 35,000 and 70,000 ESCs each.

After library preparation, the two reactions were found to have indistinguish-

able distributions of fragment sizes and were, therefore, combined for

sequencing. (Therefore, each biological replicate consisted of two ATAC

reactions.) Data analysis is described in the Supplemental Experimental

Procedures.

Statistical Methods

For non-genomic in vitro experiments, two-tailed t tests were used to calculate

statistical significance. A chi-square test was used to evaluate genotypes of

offspring from Tip60ci/+ intercrosses. Adjusted p values were calculated for

RNA-seq data using DEseq2. Significance of differences in ATAC-seq read

enrichment were calculated by a hypergeometric test using the dhyper pack-

age in R.
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