Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells

Karen A. Dunphy
University of Massachusetts Amherst

Et al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cancer Biology Commons, Cell Biology Commons, Neoplasms Commons, Oncology Commons, and the Translational Medical Research Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Title: Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells

Authors: Karen A. Dunphy1,2, Erick Roman-Perez1, Rehaneh Hooshyar1, Mary J. Hagen1, Amy L. Roberts1,2, Mara Isel Guerrero-Zayas1, and D. Joseph Jerry1,2

Institutional affiliations: 1Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, MA 01003 & 2Pioneer Valley Life Sciences Institute, Springfield, MA 01199

Contact Information: Karen A. Dunphy
Email: kdunphy@vasci.umass.edu
Phone: (413)545-2427

Abstract:

Estrogen (17β-estradiol) has paradoxical effects in both promoting and preventing breast cancer as estrogen activates proliferation, but also promotes p53-mediated surveillance pathways. Estrogen mediates its effects in target tissues through the activation of estrogen receptor subtypes: ERα and ERβ. To examine the capability of these receptors in mediating surveillance as opposed to proliferation, selective estrogen receptor agonists were compared with 17β-estradiol for induction of proliferation and radiation induced apoptosis in vivo. Transcriptional regulation of estrogen-responsive genes was also compared in mouse mammary epithelium in vivo and in the human mammary MCF7 cell line transduced with a repressible ERβ. Selective activation of ERβ with the agonist diarylpropionitrile (DPN) in vivo enhances p53-mediated apoptosis in the mouse mammary epithelium without stimulating proliferation. In addition, radiation-induced apoptosis is significantly reduced in mice lacking ERβ (βERKO). As expected, 17β-estradiol or selective activation of ERα with pyrazole triol (PPT) induced the expression of estrogen-response genes including progesterone receptor, amphiregulin and trefoil factor 1. DPN and ERβ failed to induce the expression of these genes. Interestingly, the ERβ agonist DPN selectively induced the expression of genes that repress proliferation including TGFβ2 while inhibiting proliferative canonical wnt signaling via beta-catenin by inducing WNT5a and AXIN2. DPN was also more potent in stimulating the expression of EGR1, a modulator of p53 activity. These results suggest that ERα and ERβ have distinct roles in gene regulation. In addition, the ability of DPN and ERβ to potentiate surveillance pathways while limiting proliferation suggests that ERβ agonists may have therapeutic and chemopreventive value in breast cancer.