Thrombotic Thrombocytopenic Purpura or Disseminated Intravascular Coagulation? Diagnostic Dilemma in the ICU

Lindsay Gittens
University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/anesthesiology_pubs

Part of the Anesthesiology Commons

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Anesthesiology and Perioperative Medicine Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
DIC and TTP are two causes of thrombocytopenia that require timely diagnosis and different treatments. Both conditions can be difficult to recognize as clinical presentations vary and current diagnostic criteria lack specificity. DIC is a complex thrombohemorrhagic condition that is always secondary to an underlying disorder, the most common causes being sepsis or trauma. It is primarily a clinical diagnosis that must be confirmed by laboratory data (see figure 2). There is, however, no single laboratory test that can establish or exclude the diagnosis. TTP is a rare condition characterized by systemic microvascular thrombosis, with an incidence of 4 to 11 cases per million people. Like DIC, TTP has no specific diagnostic test and it shares many of the clinical and laboratory features of DIC that can make the two diagnoses difficult to differentiate. Prompt recognition of TTP is warranted as it is a rare condition that must be confirmed by laboratory data. As mentioned previously, the literature shows that there is no conclusive diagnostic test for either condition, and diagnosis is based on clinical suspicion in conjunction with laboratory results.

This is the case of a 77 year old female with PMH of spinal degeneration s/p multiple spinal surgeries, hypertension, and hypothyroidism, who presented to the surgical ICU s/p T5-lumbar posterior fusion transverse osteotomy, L1-L2 transfemoral lumbar interbody fusion, and T11-T12 posterior laminectomy. Her operative course was prolonged due to an incidental durotomy. She required a phenylephrine infusion for the majority of the 11-hour case and fluid resuscitation of 3 units of PRBCs, 7710 ml of crystalloid, and 780 ml of cell saver. Blood loss was estimated at 1500 ml and urine output was 1150 ml. Postoperatively she went to the ICU hemodynamically stable and intubated. By HD2, her renal function had worsened and she had developed thrombocytopenia (figure 1). A FENa done at the time was consistent with intrinsic renal damage. By HD3, the patient was also noted to have oozing at an antecubital IV site. A DIC panel done on HD3 was inconclusive, having revealed an elevated FDP and D-dimer with a low AtIII but an elevated fibrinogen and marginally elevated PT and PTT. TTP was being considered in the setting of renal failure which was likely acute tubular necrosis. On HD6 the patient developed severe hyponatremia, hypochloremia and an altered mental status. After the patient’s platelets dropped to 21, plasma exchange was scheduled for HD7, but before initiating this treatment her platelets began to improve. The fact that her thrombocytopenia improved without intervention ruled out TTP as the etiology. She was transferred to the floor on HD6 with a diagnosis of DIC and AKI, likely due to an intra-operative event.

Discussion

The clinical differentiation between DIC and TTP can be a diagnostic challenge. In our patient, the inconclusive DIC panel in addition to renal failure made TTP the most concerning alternative diagnosis. As previously mentioned, the literature shows that there is no conclusive diagnostic test for either condition, and diagnosis is based on clinical suspicion in conjunction with laboratory results.

Our patient had symptoms and laboratory values that were consistent with both DIC and TTP, and both diagnosis were considered for the majority of her hospital course (figure 3). It was ultimately the spontaneous recovery of her platelet count that ruled out DIC as the etiology. The initial DIC panel on HD 4 was considered “inconclusive” because of the elevated fibrinogen and marginally elevated clotting times, but the literature shows that in the acute phase response there is shortening of activated partial thromboplastin time and increased fibrinogen concentrations2. Therefore a normal value for these measurements may not rule out DIC. As previously mentioned, the patient’s acute renal failure was another reason TTP was strongly considered. Literature shows, however, that acute renal failure occurs infrequently in TTP. Our patient’s renal failure was likely coincidental, secondary to an intraoperative insult. Critical care patients often have anemia and thrombocytopenia and the etiology is unlikely to be TTP even if MAHA is present3.

Our case demonstrates the difficulties in confirming a diagnosis with sensitive but nonspecific criteria. DIC and TTP share similar characteristics, but missing a timely diagnosis of TTP can prove fatal for the patient without treatment.

References

Abbreviations

- DIC: Disseminated intravascular coagulation
- TTP: Thrombotic Thrombocytopenic Purpura
- AKI: Acute kidney injury
- MAHA: Microangiopathic hemolytic anemia
- HD: Hospital day