Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length or litter size in micedagger

Mingzi Qu
University of Massachusetts Medical School

Ping Lu
University of Massachusetts Medical School

Karl D. Bellve
University of Massachusetts Medical School

See next page for additional authors
Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length or litter size in mice.

Authors
Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, and Ronghua ZhuGe

Keywords
Calcium, Ion channels, Myometrium, Transgenic/Knockout model, Uterus

Rights and Permissions
© The Author(s) 2019. This is a pre-copyedited, author-produced version of an article accepted for publication in Biology of Reproduction following peer review. Accepted manuscript posted after 12 months as allowed by the publisher's author rights policy at https://academic.oup.com/journals/pages/access_purchase/rights_and_permissions/self_archiving_policy_b.

This article postprint is available at eScholarship@UMMS: https://escholarship.umassmed.edu/pmm_pp/94
Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length or litter size in micec

Running title. A genetic study of TMEM16A in myometrial cells

Summary sentence. The TMEM16A is absent in myometrial cells and exerts no impact on Ca2+ signaling, contractile responses and pregnancy in mice.

Keywords: Calcium, Ion channels, Myometrium, Uterus, Transgenic/Knockout model

Mingzi Qu1,2, Ping Lu2, Karl Bevel3, Kevin Fogarty3, Lawrence Lifshitz3, Fangxiong Shi1,∗ and Ronghua ZhuGe2,∗

1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China. 2Dept. of Microbiology & Physiological Systems, 3Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

cGrant support: This study was supported in part by the National Natural Science Foundation of China (31572403 to F.S.), and by funding from University of Massachusetts Medical School to R.Z.G..

∗Correspondence: Fangxiong Shi, Ph.D. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Telephone: 86 25 84399112; Email: fxshi@njau.edu.cn or Ronghua ZhuGe, Ph.D., Dept. of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA. Telephone: 508-856-3793, Email: Ronghua.zhuge@umassmed.edu.

Abstract

Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance and parturition; thus identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl− channels in myometrial cells. To unambiguously determine the function of this channel in these cells,
we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e., TMEM16A^{SMKO}) mice. We found that myometrial cells from TMEM16A^{SMKO} mice generated the same pattern and magnitude in Ca²⁺ signals upon stimulation with KCl, oxytocin and PGF2α compared to the isogenic control myometrial cells. At the uterine tissue level, TMEM16A deletion also did not cause detectable changes in either spontaneous or agonist (i.e., KCl, oxytocin and PGF2α)-induced contractions. Moreover, in vivo the TMEM16A^{SMKO} mice gave birth at full term with the same litter size as genetically identical control mice. Finally, TMEM16A immunostaining in both control and TMEM16A^{SMKO} mice revealed that this protein was highly expressed in the endometrial stroma, but did not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. Yet these two functions could underlie the normal gestation length and litter size in the TMEM16A^{SMKO} mice.

Introduction

Myometrial or uterus smooth muscle (USM) contraction and relaxation is a fundamental behavior of the uterus, essential for normal reproduction in humans. In the non-pregnant stage, USM generates peristalsis to facilitate expulsion of menses (1, 2). This peristalsis is also required for embryo implantation and pregnancy establishment. During pregnancy, USM contractile activity subsides in order to maintain pregnancy (3, 4). As pregnancy approaches full term, USM generates synchronized and coordinated contractions, leading to fetus delivery (5). Dysfunction in uterine contractility is a major cause of a variety of obstetrical and gynecological disorders such as dysmenorrhea, adenomyosis, miscarriage, preterm labor and postpartum bleeding.

USM contraction and relaxation is a highly dynamic and versatile process. Yet, in essence USM exhibits two phenotypic contractile activities, i.e., spontaneous or induced. Compelling evidence has established that ion channels are the key proteins necessary to produce both types of contractions in
the USM (3, 4, 6, 7). Therefore, it is not only physiologically but also pathologically important to identify which ion channels underlie these two types of USM contractions. Among ion channels, the presence and identity of Ca\(^{2+}\)-activated Cl\(^{-}\) channels (CaCCs) in the USM cells have been highly controversial and debatable. Pharmacologically, several studies demonstrated that CaCCs participate spontaneous and agonist-induced uterine contraction (8-11). Importantly, a patch clamp recording study indicated that Ca\(^{2+}\)-activated Cl\(^{-}\) currents are present in ~30% of rat pregnant myometrial cells (12). However, the gene identity of CaCCs in myometrial cells remains unsettled. Song et al detected CLCA4 expression and its upregulation prior to parturition in rat myometrium, suggesting that this gene may encode CaCCs in USM cells (13). But whether the CLCA family can encode \textit{bona fide} Cl\(^{-}\) channels has been challenged by several studies. Mundhenk et al even found that CLCA3, a member of the CLCA family, is a secreted protein, thus it could not form an ion channel in the surface membrane (14, 15). Very recently, based on functional and pharmacological studies Bernstein et al proposed that ANO1 (TMEM16A) and ANO2 (TMEM16B) are the CaCCs in myometrial cells in mice and human (16, 17). However, Dodds et al could not detect the presence of ANO1 in mouse myometrial cells even though CaCC inhibitors can inhibit agonist-induced contraction (9). To this day, the genetic evidence for the presence of CaCCs in USM cells is lacking.

We recently used smooth muscle cell-specific TMEM16A deletion mice establishing that \textit{Tmem16a} encodes CaCCs in smooth muscle cells from airway and internal anal sphincter (18, 19). In this study, we characterized the expression of TMEM16A and TMEM16B in mouse uteri, and studied the impact of smooth muscle specific \textit{Tmem16a} deletion on \textit{in vivo} reproduction behavior and \textit{in vitro} Ca\(^{2+}\) signals and contraction responses in mice.

\textbf{Materials and Methods}

\textbf{Mice}

All experimental protocols for animal research were approved by the Institutional Animal Care and Use Committees at the University of Massachusetts Medical School (UMMS) (protocol number A1473) in accordance with the National Research Council Publication Guide for the Care and Use of Laboratory
Animals and NIH Guide for the Care and Use of Laboratory Animal. Mice were maintained under a standard 12 h light/dark cycle (lights on at 07:00 AM) with food and water ad libitum (room temperature 22±2°C). C57BL/6 mice were purchased from the Jackson Laboratory in Bar Harbor, ME, USA, and bred in the animal care facility at UMMS, Worcester, MA, USA. \textit{Tmem16a}^{\text{floxflox}} mice with germ-line transmission were generated and confirmed by genotyping analysis and Southern blot analysis as described previously(18). To generate smooth muscle cell-specific \textit{Tmem16a} knockout mice, \textit{Tmem16a}^{\text{floxflox}} mice were crossed with \textit{SMA}^{\text{Cre}} mice. \textit{Tmem16a}^{\text{floxflox/+; SMA}^{\text{Cre}}} mice were used as the control and designated as TMEM16A CTR while \textit{Tmem16a}^{\text{floxflox; SMA}^{\text{Cre}}} mice, i.e., TMEM16A^{\text{SMKO}} mice, were used as the experimental group. TMEM16A CTR and TMEM16A^{\text{SMKO}} mutant mice were in a mixed C57BL/6 and Sw/129 background and were used at ages of 8-12 weeks.

\textbf{Mouse mating and pregnancy monitoring}

One-to-one pair matings were set at the end of the day. Female mice checked early the following morning with a vaginal plug were deemed a successful mating and designated as day 0 of pregnancy. Starting on day 18 of pregnancy mice were monitored twice a day for delivery.

\textbf{Preparation of myometrial tissues}

Female mice at estrus or at day 18 of pregnancy were euthanized by CO\textsubscript{2} inhalation and cervical dislocation. The estrus stage was selected because spontaneous uterine contraction in this stage is dominated by a single large spike (9) that makes frequency analysis more reliable. Uteri were quickly removed and transferred to ice-cold and oxygenated Krebs physiological buffer (KPS) which was comprised of (in mM): 118.07 NaCl, 4.69 KCl, 2.52 CaCl\textsubscript{2}, 1.16 MgSO\textsubscript{4}, 1.01 NaH\textsubscript{2}PO\textsubscript{4}, 25 NaHCO\textsubscript{3}, and 11.10 glucose.

\textbf{Measurement of myometrial contractility}

Uteri from estrus mice were cut into circumferential rings (1.5 mm), while uteri from the antimesometrial border (i.e., the side opposite the implantation site) from d18 pregnant mice were cut into longitudinal strips (5 mm x 1.5 mm). The rings or strips were then transferred to 5-mL muscle baths containing ice cold oxygenated KPS. The rings or strips were mounted on a wire
myograph chamber (610-M, Danish Myo Technology, Aarhus, Denmark), and tension was measured by a PowerLab (ADInstruments, Colorado Springs, CO, USA) recording device. Each smooth-muscle ring or strip was equilibrated for 60 minutes with new KPS solution every 15 min, and then a 0.1 g load was applied. To test contractile responses, each ring or strip was stimulated twice with KCl (60 mM), separated by 10 min, before proceeding to other treatments. For the dose-response to KCl, each dose of KCl was added and kept for 5 min followed by three washes with KPS. For the dose-responses to oxytocin and PGF2α, either oxytocin or PGF2α was added in a cumulative manner at the concentrations as indicated in the figures. The contractile responses were calculated as area under curve (AUC), and normalized to the values (AUC/min) induced by 60 mM KCl pre-tested in the same ring or strip.

Isolation of mouse USM cells

Uteri from day 18 pregnant mice were quickly removed and placed in a pre-chilled dissociation solution consisting of (in mM): 135 NaCl, 6 KCl, 5 MgCl₂, 0.1 CaCl₂, 0.2 EDTA, 10 Hepes, and 10 glucose (pH 7.3). After gently removing the endometrium, the longitudinal myometrium were isolated and cut into strips (5 mm x 1.5 mm). The tissue strips were first incubated in a dissociation medium containing 30 unit/ml papain (Sigma-Aldrich), 1 mM DTT, and 0.5 mg/ml amino acid-free BSA (Sigma-Aldrich) at the room temperature for 30 min, and then transferred to a dissociation medium containing 3 unit/ml collagenase F (Sigma-Aldrich) and 0.5 mg/ml BSA at 35°C for another 5 min. Finally, the strips were agitated with a fire polished wide-bore glass pipette to release the cells.

Immunohistochemical analyses

Cryosections with an 8-μm thickness were fixed in pre-cooled acetone for 10 minutes and washed with PBS. The non-specific binding of primary antibodies was blocked by incubation with PBST containing 1% BSA for 1 hr. Incubation was carried out overnight at 4°C with a rabbit polyclonal antibody to TMEM16A (ab53212, 1:200; Abcam) and a mouse monoclonal antibody to MYH11 (ab683 clone 1G12, 1:200; Abcam). The specificity of these antibodies has been established by others (18, 20). After washing in PBS, cells were incubated with an Alexa Fluor 555-conjugated goat anti-Rabbit IgG (Cell
Signaling Technology, dilution 1:500) or an Alexa Fluor 488-conjugated goat anti-Mouse IgG (Cell Signaling Technology, dilution 1:500) for 1 hr. Negative controls were performed by omitting the primary antibody (Supplementary Figure 1). Immunoreactivity was evaluated using a Leica TCS SP5 confocal laser scanning microscope system (Leica Microsystems Inc., Buffalo Grove, IL, USA).

Measurement of global [Ca²⁺]

Fluorescence images using fluo-3 as a calcium indicator were obtained using a custom-built wide-field digital imaging system. The camera was interfaced to a custom-made inverted microscope, and the cells were imaged using a 20x Nikon 1.3 NA objective for global [Ca²⁺] measurement. The 488 nm line of an Argon Ion laser provided fluorescence excitation, with a shutter to control exposure duration; emission of the Ca²⁺ indicator was monitored at wavelengths >500 nm. The images were acquired at the speed of 1 Hz for global [Ca²⁺] measurement. Subsequent image processing and analysis was performed off line using a custom-designed software package, running on a Linux/PC workstation.

[Ca²⁺] was represented as \((F-F₀)/F₀ \times 100\), i.e., \(\Delta F/F₀ \times 100\), where \(F\) is the fluo-3 fluorescence from entire cells in the time series and \(F₀\) is the “resting” level derived from the same time series by computing the median value before treatments.

Reverse transcription-PCR and Quantitative Real-time PCR

The uterine endometrium and myometrium from mice were carefully isolated and quickly cleaned by removing connective tissues. Subsequently the samples were frozen and ground to homogeneity in liquid nitrogen. Total cellular RNA was isolated by using Trizol (Invitrogen, Carlsbad, CA, USA) as described in the manufacturer’s instructions. Then 2µg of isolated RNA from each sample was reverse-transcribed into cDNA using SuperScript® III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). The cDNA synthesis products were diluted to 200 µl, of which 1 µl was used as template for amplification of *Tmem16a* and *Tmem16b*. The housekeeping gene β-actin was used as a positive control.

Quantitative real-time PCR (qRT-PCR) was carried out to determine the mRNA levels of *Tmem16a* with iTaq™ Universal SYBR® Green Supermix (Bio-rad, Hercules, CA, USA) in accordance
with the manufacturer’s protocols. The PCR cycling consisted of 40 cycles of amplification of the template cDNA with primer annealing at 60°C. Then the relative level of expression of each target gene was calculated using the $2^{ΔΔCt}$ method. Target genes were normalized against the housekeeping gene β-actin before further analysis in Fig. 1. All the primers are listed in Supplementary Table 1.

Statistics

Unless stated otherwise, data are reported as mean ± standard error of the mean (SEM) and n represents the number of myometrial cells, uterine rings/strips, or mice. Statistical analyses of differences were carried with Student’s t-test when data was from independent groups. Dose response curves had an ANOVA followed by post-hoc pair-wise t-tests at each dosing level. The significance level was set at $p<0.05$.

Results

USM cells do not express TMEM16A

TMEM16A and TMEM16B are two canonical Ca$^{2+}$-activated Cl$^-$ channels (CaCCs) in a variety of cells and tissues (21-23), we therefore performed RT-PCR using endometrium and myometrium (with the serosa) from estrus and day 18 pregnant mice with specific primers for Tmem16a and Tmem16b. Figure 1A shows that positive control tissues from the eye and brain expressed both TMEM16A and TMEM16B, while myometrium and endometrium from both reproductive stages expressed TMEM16A, but not TMEM16B. To quantify TMEM16A expression, we measured TMEM16A mRNAs with quantitative PCR using endometrium and myometrium from estrus and day 18 pregnant mice. As shown in Fig. 1B, in both stages endometrium expressed more TMEM16A than myometrium, and in both tissues, TMEM16A level was higher at estrus than in day 18 pregnancy.

To determine whether USM cells express TMEM16A, we conducted dual-immunostaining of TMEM16A and MYH11 in uterine tissues from estrus and day 18 pregnant mice. MYH11 was selected because this protein is a highly specific smooth muscle cell marker(24). As expected, MYH11 staining was robustly detected in the smooth muscle layers in both estrus and day 18 pregnant mice (Figure 1C). However, essentially no TMEM16A staining can be found in the MYH11 positive smooth muscle
cells (Figure 1C). Interestingly, TMEM16A staining was detected in the stroma, but not in the luminal epithelium in both estrus and pregnant mice.

Smooth muscle cell-specific TMEM16A deletion does not change spontaneous uterine contraction in non-pregnant mice.

In our previous studies, we generated a line of mice whose TMEM16A in smooth muscle cells was specifically deleted with the LoxP-Cre technology (18). With these mice, we have successfully established that TMEM16A encodes CaCCs in smooth muscle cells from airway smooth muscle and internal anal sphincter (18, 19). Because no TMEM16B is expressed in the myometrium from both reproductive stages, we used TMEM16A^{SMKO} mice to study the role, if any, of TMEM16A in USM cells. We first examined its potential effect on spontaneous contraction. In our preliminary study of CTR mice, we noticed that both isolated uterine circular rings from estrus and longitudinal strips from day 18 pregnant mice generated spontaneous contraction, but after equilibrating for 60 min, the contractions from the pregnant mice eased while it persisted for several hours in the uterine circular rings from estrus mice. Hence we focused on examining the effect of TMEM16A deletion on spontaneous contraction in the estrus stage. To quantify this effect, we calculated the contraction activity in the first 10 min post-equilibrium. As shown in Figure 2, the frequency of spontaneous contraction in the TMEM16A^{SMKO} mice was 0.055 ± 0.005 Hz which was not significantly different from 0.064 ± 0.006 Hz in the CTR mice (n=20 uterine circular rings from 5 mice, P>0.05). To minimize the variation in the force due to the factors such as ring size and contamination of endometrium, we compared the force differences in the spontaneous contraction after normalizing with 60 mM KCl. In the CTR mice, the spontaneous contraction was 63.5 ± 5.1% of KCl-induced contraction, and in the TMEM16A^{SMKO} mice, this value was 61.5 ± 3.0% (n=20 uterine circular rings from 5 mice, P>0.05 CTR vs TMEM16A^{SMKO}).

Smooth muscle cell-specific TMEM16A deletion exerts no change in KCl-induced contraction.

Considering controversial results on the role of TMEM16A in the evoked uterine force generation, we assessed the effect of its deletion in smooth muscle cells on the contraction induced by KCl and contractile agonists (see below). In uterine circular rings at estrus from the CTR mice, KCl at
10 mM caused a substantial contraction (i.e., $36.3 \pm 5.1\%$ of 60 mM KCl-induced contraction), and as its concentration was incrementally raised to 40 mM, KCl caused a dose-dependent contraction to reach $95.9 \pm 5.2\%$ of the 60 mM KCl-induced contraction. Beyond 40 mM, KCl-induced contraction was inversely related to its concentration, i.e., the higher the concentration, the less the contraction (At 120 mM, KCl caused $54.0 \pm 4.6\%$ of the 60 mM-induced contraction) (Figure 3A). The same KCl-induced dose response curve was observed in uterine circular rings from TMEM16ASMKO mice (Figure 3A).

In day 18 pregnant CTR mice, KCl at 10 mM caused a marginal contraction (i.e., $4.6 \pm 2.6\%$ of the 60 mM KCl-induced contraction) in uterine longitudinal strips. Yet, it induced markedly larger contractions at 20 mM ($71.1 \pm 3.3\%$ of the 60 mM KCl-induced contraction) and at 40 mM ($131.2 \pm 3.1\%$ of the 60 mM KCl-induced contraction). Similar to non-pregnant uteri, KCl-induced contraction was inversely decreased as its concentration was increased further to 120 mM (which was at $48.5 \pm 4.6\%$ of the 60 mM KCl-induced contraction) (Figure 3B). This biphasic contraction response to KCl was detected in TMEM16ASMKO mice, and no difference was detected between the CTR and TMEM16ASMKO mice (Figure 3B).

Smooth muscle cell-specific TMEM16A deletion causes no change in OT- and PGF2α-induced contraction.

Oxytocin (OT) and PGF2α are two of the most important hormones regulating uterine contractility in both non-pregnant and pregnant stages, we therefore studied whether TMEM16A deletion in smooth muscle cells exert any effects on OT- and PGF2α-induced uterine contraction. In CTR mice at estrus, OT and PGF2α induced dose-dependent contractions (Figures 4A and 5A). In uteri (at those same stages) from TMEM16ASMKO mice, both agonists also caused dose-dependent contractions, and moreover, the dose-response curves were not different compared to those from the CTR mice (Figures 4A and 5A).

Compared to the circular uterine rings from mice at estrus, 60 mM KCl generated a similar force in the longitudinal uterine strips from day 18 pregnant mice. Using 60 mM KCl as a reference, we
found that uteri strips from day 18 pregnant mice generated stronger force in response to OT in both CTR mice and TMEM16ASMKO compared to those from mice at estrus (Figure 4B vs Figure 4A), but dose-force response curves to OT between CTR mice and TMEM16ASMKO mice were not significantly different (Figure 4B). In day 18 pregnant mice, PGF2α generated the same magnitude force, but dose-force response curves were right-shifted compared to mice at estrus (Figure 5B vs Figure 5A). However, there was no significant difference in dose-force response curve between CTR and TMEM16ASMKO mice (Figure 5A and 5B).

Smooth muscle cell-specific TMEM16A deletion produces no effect on KCl-, OT- and PGF2α-induced rise in intracellular Ca2+ in USM cells from day 18 pregnant mice.

Ca2+ is the primary signal for USM contraction and a ligand for TMEM16A, we hence tested whether the KCl- or agonist-induced increase in intracellular Ca2+ concentration \([\text{Ca}^{2+}]\text{i}\) was impaired in TMEM16ASMKO mice. Since no difference in the contraction of non-pregnant and pregnant uteri was detected in TMEM16ASMKO mice, and isolation of single USM cells was much easier from day 18 pregnant mice, we focused on examining the Ca2+ signal in the USM cells from longitudinal myometrium at this stage of mice. KCl at 60 mM markedly increased \([\text{Ca}^{2+}]\text{i}\), often in an oscillating pattern. To simplify the analysis, we compared the maximal peak Ca2+ signal in the train of Ca2+ oscillations. As shown in Figure 6A, there was no significant difference in the peak Ca2+ rise upon stimulation with KCl when TMEM16A was deleted. PGF2α at 3 µM produced a similar oscillating Ca2+ response as KCl (Figure 6B). TMEM16A deletion neither altered this pattern nor changed the peak Ca2+ rise in response to PGF2α. Interestingly, OT at 100 nM elicited a sustained rise in \([\text{Ca}^{2+}]\text{i}\), and this rise was not changed when TMEM16A was deleted (Figure 6C).

TMEM16ASMKO mice have normal gestation duration and litter size.

As smooth muscle cell TMEM16A deletion results in hypotension (25), we assessed whether there was a change in reproduction in TMEM16ASMKO mice. TMEM16A KO mice had a gestation of approximately 19 days, which was not different from the CTR mice (Table 1). These KO mice had a litter size of 7 pups, which also was not different from the CTR mice (Table 1).
Discussion

Identifying ion channel genes that are required for uterine contraction is essential to understand uterine function and reproduction. In this study, using an integrative approach of molecular biology, genetics, and physiology, we firmly established that Tmem16a is not the gene encoding CaCCs in mouse USM cells. We have several lines of evidence to support this conclusion. First, when TMEM16A is specifically deleted in smooth muscle cells, myometrium generates the same spontaneous and agonist-induced contraction compared to the myometrium from isogenic control mice. Second, smooth muscle cell-specific TMEM16A deletion does not alter isolated single USM cell [Ca\(^{2+}\)]\(_i\) responses upon stimulation via depolarization or contractile agonists oxytocin and PGF2α. Third, smooth muscle cell-specific TMEM16A deletion does not impair mouse reproduction in terms of their gestation duration and litter size. Fourth, immunostaining with a specific antibody for TMEM16A could not detect TMEM16A expression in USM cells from both isogenic control mice and Tmem16a knockout mice. This failure in detecting TMEM16A in USM cells is not due to the TMEM16A antibody used because the same antibody showed robust staining signals in endometrial stromal cells (see below) in the same tissue.

A major strength of this study is its use of smooth muscle cell-specific TMEM16A knockout cells and mice. Previous studies have depended on using CaCC inhibitors (e.g. niflumic acid) or TMEM16A inhibitor benzbromarone to infer the involvement of this gene in uterine contraction (9, 10, 16, 17, 26). CaCC inhibitors such as niflumic acid are well known to have off-target nonspecific effects. For example, in addition to inhibiting CaCCs, niflumic acid blocks or activates many other ion channels including big-conductance Ca\(^{2+}\)-activated K\(^+\) channels in smooth muscle cells (27-30). Benzbromarone is a newly identified TMEM16A inhibitor (31). But this compound can also activate the Kv7 (KCNQ) K\(^+\) channel family, inhibit CFTR chloride channels, and alter mitochondrial function and structure (32-34). Considering the non-specific effects of these pharmacological inhibitors, we took a genetic approach to specifically delete TMEM16A. TMEM16A is widely expressed in many cell types including nerve system, epithelial cells, secretory cells and smooth muscle, and its global deletion results in mouse death shortly after their birth (21-23, 35, 36). Therefore, we used a line of mice whose
TMEM16A in smooth muscle cells are specifically deleted with the LoxP-Cre system. A potential drawback for this system is the insufficient activity of Cre to delete the gene of interest in targeted cells. We confirmed that the Cre line used in this study effectively deletes TMEM16A in smooth muscle cells, and moreover, the same TMEM16A deletion abolishes Ca$^{2+}$-activated Cl$^-$ currents in smooth muscle cells from airway and internal anal sphincter (18, 19). Therefore, our genetic approach provides compelling evidence that TMEM16A is neither expressed nor functional in mouse USM cells in both pregnant and non-pregnant stages.

The uterus is a myogenic and spontaneously active organ. A major unresolved question about this organ relates to the cell types and cellular mechanisms of the pacemaker underlying this autonomic contractile behavior. One potential cell type and mechanism is that CaCCs in USM cells function as a pacemaking channel (7, 37, 38). As smooth muscle cells have a reversal potential for Cl$^-$ around -25 mV which is less negative than the resting membrane potential (e.g., -60 mV), activation of CaCCs is expected to generate a current that would depolarize the membrane beyond the threshold of its action potential. Our present study indicates if this mechanism works in the uterus, TMEM16A is not the CaCC channel which generates this pacemaking current in USM cells as myometrial tissues from TMEM16ASMKO mice exert the same spontaneous contraction compared with the isogenic control mice. Another possibility for the uterine pacemaking could be due to the TMEM16A CaCCs in the interstitial cells of Cajal (ICCs) or PDGFRα$^+$ cells as in the gut (39, 40). However, the presence of ICCs or ICC-like cells in the uterus has been highly controversial and remain to be settled (41-44). Importantly, ICC-like cells in the uterus do not generate spontaneous currents(42), a characteristic of the pacemaking current, and uterine cells don’t express TMEM16A(45). Hence TMEM16A is most likely not the channel which produces pacemaking currents in these cells.

Uterine contraction is under tight control by endocrine and paracrine hormones. Among these hormones, oxytocin and PGF2α are two of the most important ones regulating uterine contraction during both pregnant and non-pregnant stages and during labor. Oxytocin and PGF2α activate oxytocin receptor (OTR) and PGF2α receptor (PTGFR) in USM cells, respectively. Activation of these two
receptors turns on a canonical Gq/11-mediated signaling pathway, leading to a rise in intracellular Ca^{2+}. This rise in Ca^{2+} can activate CaCCs which in turn functionally couples with voltage gated Ca^{2+} channels or ORAI Ca^{2+} influx channels (46-48). Should TMEM16A CaCCs be present in USM cells, we would expect to observe that the oxytocin- and PGF2α-induced rise in intracellular Ca^{2+} and/or contraction would be suppressed in our KO experiments. Yet, our experiments in TMEM16A^{−/−} cells and uterine tissues do not show this.

A significant finding in this study is that TMEM16A is expressed in the endometrium. Although the cell type(s) expressing TMEM16A in the endometrium is yet to be determined, the TMEM16A immunostaining pattern suggests that these cells are not luminal endometrial epithelial cells, instead they are likely to be stromal cells. This raises a possibility that TMEM16A in these cells may play an important reproductive function. Indeed, a very recent study found that TMEM16A is upregulated during embryo implantation and decidualization, and pharmacological inhibition of TMEM16A impairs these two processes in mice (49). It would be highly significant to identify the stromal cell type that expresses TMEM16A, determine the role of TMEM16A in the stromal cells in embryo implantation and decidualization, and delineate the molecular mechanisms by which TMEM16A may mediate these reproductive processes.

In conclusion, mouse USM cells from both non-pregnant and pregnant stages do not express TMEM16A CaCC channels, and these cells do not use this channel to generate spontaneous and agonist-induced contraction relating to reproduction. Since TMEM16A is robustly expressed in mouse endometrial stromal cells, it is likely this gene may play an important role in reproduction processes such as embryo implantation and decidualization. Whether our findings in mice can translate to human myometrium warrants further investigation.

Acknowledgments

We thank Dr. Min-Sheng Zhu at Nanjing University, China, for providing Tmem16a^{lox/loxflox};SMA^{Cre} mice.
Conflict of Interest Statement

The authors declare no potential conflicts of interest

References

Figure 1. **TMEM16A is expressed in endometrial stromal cells but not in myometrial cells.**

A. RT-PCR of Tmem16a and Tmem16B in endometrium and myometrium from estrus and day 18 pregnant CTR mice. M: Molecular marker, Lane 1: myometrium from day 18 pregnant mice, lane 2: endometrium from day 18 pregnant mice, lane 3: myometrium from estrus, lane 4: endometrium from estrus, lane 5: eye, lane 6: brain, lane 7: no primer negative control. Eye and brain were used as positive controls.

B. Quantitative PCR analysis of TMEM16A mRNA in endometrium and myometrium from estrus and day 18 pregnant CTR and TMEM16ASMKO mice. Bars represent mean ± SE, n=5 repeats.

C. Co-immunostaining of TMEM16A and MYH11, a smooth muscle cell marker, in uteri from estrus and day 18 pregnant CTR and TMEM16ASMKO mice. White bars equal 30 μm.
Figure 2. TMEM16A does not contribute to spontaneous uterine contraction in non-pregnant mice at estrus.

A, B. Representative recordings of spontaneous contraction in circular myometrial rings from CTR mice (A) and TMEM16A^{SMKO} mice (B).

C, D. Comparisons of the frequency (C) and amplitude (D) of spontaneous contraction between CTR mice and TMEM16A^{SMKO} mice. Bars represent mean ± SEM, n=20 strips from 5 mice; P>0.05 unpaired t-test CTR vs TMEM16A^{SMKO}.

Figure 3. TMEM16A does not contribute to KCl-induced uterine contraction in non-pregnant and pregnant mice. **A.** A representative dose-force response upon stimulation with KCl in an estrus circular myometrial ring from a CTR mouse (a) and a TMEM16A^{SMKO} mouse (b), and the summarized data (c) (Bars represent mean ± SEM, n=12 rings from 5 mice; P>0.05 ANOVA CTR vs TMEM16A^{SMKO}). **B.** A representative dose-force response upon stimulation with KCl in a day 18-pregnant longitudinal myometrial strip from a CTR mouse (a) and a TMEM16A^{SMKO} mouse (b), and the summarized data (c) (Data represent mean ± SEM, n= 8 strips from 4 mice; P>0.05 ANOVA CTR vs TMEM16A^{SMKO}).
Figure 4. TMEM16A does not contribute to OT-induced uterine contraction in non-pregnant and pregnant mice. A. A representative dose-force response upon stimulation with oxytocin (OT) in an estrus circular myometrial ring from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Data represent mean ± SEM, n=8 rings from 4 mice; P>0.05 ANOVA CTR vs TMEM16ASMKO). B. A representative dose-force response upon stimulation with OT in a day 18-pregnant longitudinal myometrial strip from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Data represent mean ± SEM, n=8 strips from 4 mice; P>0.05 ANOVA CTR vs TMEM16ASMKO).
Figure 5. TMEM16A does not contribute to PGF2α-induced uterine contraction in non-pregnant and pregnant mice.

A. A representative dose-force response upon stimulation with PGF2α in an estrus circular myometrial ring from a WT mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Data represent mean ± SEM, n=8 rings from 4 mice; P>0.05 ANOVA CTR vs TMEM16ASMKO).

B. A representative dose-force response upon stimulation with PGF2α in a day 18-pregnant longitudinal strip from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Data represent mean ± SEM, n=8 strips from 4 mice; P>0.05 ANOVA CTR vs TMEM16ASMKO).
Figure 6. TMEM16A does not contribute to KCl- and contractile agonist-induced rise in intracellular Ca\(^{2+}\) concentration in day 18-pregnant myometrial cells. A. A representative Ca\(^{2+}\) response upon stimulation with KCl in a day 18-pregnant smooth muscle cell freshly isolated from longitudinal myometrium from a CTR mouse (a) and a TMEM16A\(^{SMKO}\) mouse (b), and the summarized data (c) (Bars represent mean ± SEM, n=20 cells from 3 mice; P>0.05 unpaired t-test CTR vs TMEM16A\(^{SMKO}\)). Images shown were expressed as fluorescence intensity and were taken at the time marked in the ΔF/Φ traces below. The same convention is applied to the images in B and C. B. A representative Ca\(^{2+}\) response upon stimulation with PGF2α in a day 18-pregnant smooth muscle cell freshly isolated from longitudinal myometrium from a CTR mouse (a) and a TMEM16A\(^{SMKO}\) mouse (b), and the summarized data (c) (Bars represent mean ± SEM, n=20 cells from 3 mice; P>0.05 unpaired t-test CTR vs TMEM16A\(^{SMKO}\)). C. A representative Ca\(^{2+}\) response upon stimulation with oxytocin (OT) in a day 18-pregnant smooth muscle cell freshly isolated from longitudinal myometrium from a CTR mouse (a) and a TMEM16A\(^{SMKO}\) mouse (b), and the summarized data (c) (Bars represent mean ± SEM, n=20 cells from 3 mice; P>0.05 unpaired t-test CTR vs TMEM16A\(^{SMKO}\)).
Table 1. Smooth muscle specific TMEM16A deletion does not alter gestation duration and litter size.

<table>
<thead>
<tr>
<th></th>
<th>CTR</th>
<th>TMEM16ASMKO</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestation (day)</td>
<td>19 ± 0.5</td>
<td>19.3 ± 0.5</td>
<td>>0.05</td>
</tr>
<tr>
<td># pups/litter</td>
<td>7.9 ± 0.7</td>
<td>6.9 ± 0.4</td>
<td>>0.05</td>
</tr>
<tr>
<td>N (mouse)</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>