May 22nd, 4:30 PM - 6:00 PM

Understanding Health Utilities in Women with Urinary Incontinence

Danielle Patterson
University of Massachusetts Medical School

Et al.

Repository Citation

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
UNDERSTANDING HEALTH UTILITIES IN WOMEN WITH URINARY INCONTINENCE

Danielle Patterson MD MSc¹, Michael Flynn, MD MHS¹, Courtney Stachowski BS² Abraham Morse MD MBA³

¹UMass Memorial Medical Center; ²Brigham Research Institute; ³Brigham and Women’s Hospital/Harvard Medical School

CONTACT: Danielle Patterson danielle.patterson@umassmemorial.org

ABSTRACT

Objectives: The purpose of this study was to compare the health utility of UI in women as derived from the EQ-5D with the gold standard, the Standard Gamble. The secondary aim of this study was to compare health utility values of affected patients to healthy controls.

Materials and Methods: Clinical diagnosis was categorized as normal, stress, mixed or urge urinary incontinence. Healthy controls were read a scenario for stress or mixed UI. All subjects completed the Sandvik Severity Index (SSI), EQ-5D, and Standard Gamble (SG) conversation.

Results: 50 healthy controls and 119 affected subjects were recruited. The mean utility value for incontinence varied based on method: EQ-5D (0.78 ± 0.17) and SG (0.85 ± 0.20). There was a significant difference between utility scores derived from SG and EQ-5D (p=0.0004). This significant difference was maintained in the subset of women with SUI: EQ-5D (0.81 ± 0.16), SG (0.87 ± 0.18), p=0.028; but not in women with MUI or UUI. When comparing healthy controls to women with SUI, there were significant differences in the utility values derived by SG (0.76 ± 0.26 vs. 0.87 ± 0.18, p=0.07) but not by EQ-5D. When comparing healthy controls to women with MUI, there was also a significant difference in the utility derived by SG (0.92 ± 0.10 vs. 0.75 ± 0.21, p=0.01) but not by EQ-5D. SSI scores moderately correlated with SG utility values and strongly correlated with EQ-5D utility values. Logistic regression analysis showed that utility values were unaffected by age and menopausal status.

Conclusion: This study suggests that using the EQ-5D to quantify the utility of UI may over-estimate the degree of bother when compared to SG assessment. This is important because the SG process more closely approximates the decision to undergo surgery. Relying on the EQ-5D to assess health utilities in women with UI may not be valid.