PFN1 phosphorylation marks protein aggregation and white matter pathology in ALS

Sepideh Parsi
University of Massachusetts Medical School

Et al.
PFN1 phosphorylation marks protein aggregation and white matter pathology in ALS

Sepideh Parsi*; Tao Qiao; Lyle Wilfred Ostrow**; Marco B. Rust***; Zuoshang Xu*

*Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 ** Johns Hopkins School of Medicine the John G. Rangos Sr. Building Baltimore, MD, 21205, USA ***Center for Mind, Brain and Behavior, Research Campus of Central Hessen, 3532 Marburg, Germany
Contact: Sepideh.parsi@umassmed.edu

Background

Amyotrophic lateral sclerosis (ALS) is a progressive, paralytic disorder characterized by degeneration of motor neurons in the brain and spinal cord. Common feature in cases of both familial and sporadic ALS is aggregation of cytoplasmic proteins, prominently but not exclusively in motor neurons. One of the well-characterized animal models in our lab is expressing an ALS related mutation, C71G, in Profilin (PFN1), a recognized actin-binding protein. Mutations in the pfn1 gene were previously shown to result in protein aggregation and insolubility of PFN1 in mouse ALS model; however, the impact and mechanism of PFN1 aggregation remain not well understood.

Post-Translational modification (PTMs) of neural proteins is one of the frequent observations in most neurodegenerative conditions related to protein aggregation. I hypothesize that under-characterized PFN1 protein post-translational modification, such as phosphorylation, contributes to the pathogenesis of ALS by accelerating PFN1 aggregation.

1. pPFN1 antibody marks a pathology specific aggregate pattern in ALS mice model white matter

Paraffin embedded Lumbar spinal cord sections from PFN1 WT and non-transgenic animals co-stained with pPFN1 antibody and hematoxylin post-antigen retrieval show a gradual increase of pPFN1 intense staining in white matter.

pPFN1 antibody selectively reacts with phosphorylated PFN1

2. pPFN1 aggregates are found in the white matter

A. nTg PFN1 PPFN1 Progression Paralysis B. Paralysis

3. pPFN1 marked myelin colocalized aggregates interacting with microglia in the white matter

A. Double staining with pPFN1 and PLP1 myelin marker B. Increased Pfp1 in PLP1+ S100B+ cells C. Double staining with pPFN1 and Iba1. pPFN1 signal does not overlap with the Iba1 signal (arrowhead) (Scale bar~20um) D. CD68 positive glial cells often found in proximity of pPFN1 positive areas but do not colocalize with pPFN1 signal. Arrowhead indicate an aggregate positive area that is engulfed by a CD68 positive cell (Scale bar~20um). E. Magnified panel in the right establishes the relationship of a pPFN1 stain positive area with CD68 expressing cells from two different angles in a confocal 3D reconstruction image (Scale bar~10um).

4. Endogenous pPFN1/PFN1 is found in both soluble and insoluble fractions in PFN1C71G

A. Schematic showing the summary of protocol used for fractionation of brainstem tissue explained in detail in material methods section. B. Representative blot of age matched nTg, PFN1 WT and PFN1 C71G (paralyzed) showing the presence of endogenous pfn1 aggregation in SOD1 G93A mice in Urea/SDS fraction. Soluble (S1), Triton-x100(S2), sarcosyl(S3) and Urea/SDS(S4) fractions respectively. The total protein stain is indicating the amount of total fluorescent protein present in each lane.

5. pPFN1 also marks aggregates in mutant SOD1 ALS model

A. Double staining with pPFN1 and misfolded SOD1 antibody. pPFN1 is partially overlapping with SOD1 positive aggregates marked with arrowheads (Scale bar~20um). All panels are same magnification and obtained after maximum projection of pPFN1 staining across z-stacks in white matter.

B. Brainstem biochemical fractionation of nTg matched with a paralyzed mouse showing the presence of endogenous PF1 aggregation in SOD1 G93A mice in Urea/SDS fraction. Soluble (S1), Triton-x100(S2), sarcosyl(S3) and Urea/SDS(S4) fractions respectively.

6. Both PFN1 and its phosphorylation is present in insoluble fraction of human sporadic ALS cases

Biochemical fractionation of spinal cord postmortem frozen samples to Soluble (S1), Triton-x100 (S2) and Urea/SDS (S4) fractions respectively. Sarcoyl soluble (S3) fraction has not been shown for simplicity since signal was below detection in this fraction.

Conclusion

pPFN1 antibody marks phosphorylation of PFN1 which can be found in aggregates. White matter pathology resulting from potentially endogenously expressed PFN1 phosphorylation in both ALS mice models independent of mutation type. Overall, our results suggest for the first time a role for phosphorylation of PFN1 in protein aggregation and white matter pathology in ALS that will shed more light on the mechanism of disease and developing potential therapeutics in near future.