Harnessing Cellular Senescence for Cancer Immunotherapy

Marcus Ruscetti

University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/publications

Part of the Cancer Biology Commons, Cellular and Molecular Physiology Commons, and the Immunotherapy Commons

Repository Citation

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in University of Massachusetts Medical School Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Harnessing Cellular Senescence for Cancer Immunotherapy

Senescence

Cancer therapy

Immune surveillance

Cell cycle arrest

Marcus Ruscetti, Ph.D.
Assistant Professor
Molecular Cell and Cancer Biology
UMass Medical School
10-26-20
Immune Checkpoint Blockade has revolutionized treatment landscape of many cancers

Non-small cell lung cancer

Hellmann et al NEJM 2018

Ledford et al Nature 2018
Only subset of immunologically “Hot” tumor types responsive to immunotherapy

Responsive

PD-1/PD-L1 and CTLA-4 blockade

Unresponsive

Hedge et al. Immunity 2019
Targeting tumor intrinsic mechanisms of immune evasion to potentiate immunotherapy

- Oncogene activation
- Tumor suppressor loss

Genetic Alterations
Targeting tumor intrinsic mechanisms of immune evasion to potentiate immunotherapy

- Oncogene activation
- Tumor suppressor loss
- Genetic Alterations
- Immune suppressive factors

Targeted Therapy
Targeting tumor intrinsic mechanisms of immune evasion to potentiate immunotherapy

- Oncogene activation
- Tumor suppressor loss
- Genetic Alterations

Targeted Therapy
Targeting tumor intrinsic mechanisms of immune evasion to potentiate immunotherapy

Targeted Therapy → Oncogene activation, Tumor suppressor loss → Genetic Alterations

Immunotherapy
Cellular Senescence: a two-component program linking intrinsic and extrinsic tumor suppression

- Stable cell cycle arrest
- Modulation of the microenvironment

Physiological stress response to damage:
- Telomere shortening (replicative exhaustion)
- Genotoxic stress
- Oxidative stress
- Oncogene activation

Potent activation of secreted factors:
- Pro-inflammatory cytokines/chemokines
- Growth and stemness factors
- Matrix metalloproteinases
- Angiogenic factors

p53 and RB pathway-regulated (gene repression)
NF-κB-regulated (gene activation)

Senescence-inducing therapies for **KRAS** mutant cancers

KRAS-driven lung cancer GEMMs

- **Vehicle**
- **Trametinib**
- **Palbociclib**
- **Combo**
- **Combo NK1.1**
- **Combo CD8**

KRAS-driven pancreas cancer GEMMs

- **Vehicle**
- **T/P**

RB-mediated senescence

Ruscetti et al. Science 2018; Ruscetti et al. Cell 2020
Therapy-induced senescence mediates divergent immune responses in different tissues.

KRAS-driven lung cancer

- Vehicle
- Trametinib/Palbociclib

KRAS-driven pancreas cancer

- NKp46
- CD31
- CD3

Ruscetti et al. Science 2018
Ruscetti et al. Cell 2020
SASP regulation in cancer: complexity and context-dependency

- Which SASP factors are important for anti-tumor immune responses?
- How is the SASP transcriptionally regulated in different contexts?
- How does the resident microenvironment affect senescence and its impact on the immune system?
Uncovering tissue-specific regulation of SASP-mediated immunity in pancreas cancer

Pancreas tumor cells in lung environment

Pancreas KPC cells ($Kras^{G12D}$; $Trp53^{-/-}$) → C57BL/6 mice → NK cells (% of CD45+)

- Vehicle
- T/P

Lung tumor cells in pancreas environment

Lung KP cells ($Kras^{G12D}$; $Trp53^{-/-}$) → C57BL/6 mice → NK cells (% of CD45+)

- Vehicle
- T/P

Pancreas environment:
- Ccl2*
- Cxcl9
- Cxcl10
- Ccl5

Lung environment:
- Tramet
- Palbo

RNA-seq
EZH2 and SUZ12 are chromatin regulators that suppress SASP

Pancreas vs. Lung TME

Encode_TF_CHIP Encode_and_ChEA_Consensus_TFs_CHIP

- EZH2_B cell
- MYOD1_myocyte
- MAZ_MEL cell line
- POLR2A_cerebellum
- CTCF_C2C12
- SUZ12_CHEA
- SALL4_CHEA
- NFE2L2_CHEA
- CTCF_ENCODE

CCL2

CXCL2

IL-6

CX3CL1

CXCL10

CCL5

CCL20

KPC1 Ren
KPC1 EZH2 2124
KPC1 SUZ12 009a

0 pg/ml
500 pg/ml
1000 pg/ml
1500 pg/ml
2000 pg/ml
2500 pg/ml
3000 pg/ml
3500 pg/ml
4000 pg/ml
4500 pg/ml
5000 pg/ml

KPC1 Ren
KPC1 EZH2 2124
KPC1 SUZ12 009a

0 pg/ml
500 pg/ml
1000 pg/ml
1500 pg/ml
2000 pg/ml
2500 pg/ml
3000 pg/ml
3500 pg/ml
4000 pg/ml
4500 pg/ml
5000 pg/ml

KPC1 Ren
KPC1 EZH2 2124
KPC1 SUZ12 009a

0 pg/ml
500 pg/ml
1000 pg/ml
1500 pg/ml
2000 pg/ml
2500 pg/ml
3000 pg/ml
3500 pg/ml
4000 pg/ml
4500 pg/ml
5000 pg/ml
Potentiating Immunotherapy in Pancreas Cancer Mouse Models

+ Ren shRNA
+ EZH2 shRNA
+ SUZ12 ShRNA

KPC cells
KPC organoids

C57BL/6 mice

Tramet
Palbo

High-throughput sequencing
(Senescence/SASP signatures)

Immune profiling

Preclinical Pipeline
“Mouse Hospital”

Tramet
Palbo
GSK126
αPD1
αCTLA4

Tumor growth
Metastatic Spread
Survival

p48-Cre;KrasG12D/+;p53fl/+
(KPC) GEMM mice
Studying senescence and immune surveillance bypass in other genetic contexts and “cold” tumor types

Prostate cancer

- Androgen receptor (AR) pathway
- PI3K pathway
- WNT pathway
- DNA repair
- Chromatin modifiers

Modeling prostate cancer in mice using *in vivo* electroporation

- Transposon Vector
- Transposase
- CRISPR/Cas9 Vector

WT C57BL/6

EPO-GEMMs

Robinson et al Cell 2015

Leibold*, Ruscetti* et al Cancer Discovery 2020
Pipeline to identify and validate senescence-inducing compounds in tumor and genotype-specific manner

In vitro

- NF-KB reporter (SASP)
- p16 reporter (senescence)
- Murine tumor cells with different genetic backgrounds

In vivo

- Chemical Library Screens
- HTVI
- EPO-GEMM platform

Genetics

- Oncogene
 - MYC
 - AR
 - Pik3ca
- Tumor suppressor
 - sg.p53
 - sg.Pten
 - sg.Rb

Immune background

- C57BL/6
- Nu/Nu (Nude)
- NOD-scid IL2Rγnull (NSG)

Therapeutic Interventions

- CDK4/6
- αCTLA-4
- αPD-1
- Senescence-inducing therapies
- Immunotherapies
Acknowledgements

Ruscetti Lab
Kat Murphy
Yvette Lopez
Loretah Chibaya
Megan Fowler (Rotation student)

Julie Zhu (Bioinformatics Core)
Haibo Liu

Mike Lee (PSB)

Scott Lowe (MSKCC)
John P. Morris IV
Ray Ho
Riccardo Mezzadra
Josef Leibold
Katerina Hatzi

Charles Sherr (St. Jude)

MCCB Department

Funding

NIH
NATIONAL CANCER INSTITUTE

4R00CA241110 - 02