May 22nd, 10:30 AM - 12:00 PM

What Works in a Pediatric Obesity Treatment Program?

Mary Savoye
Yale University School of Medicine

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Community Health and Preventive Medicine Commons, Endocrinology, Diabetes, and Metabolism Commons, Nutrition Commons, and the Pediatrics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
What Works in a Pediatric Obesity Treatment Program?

UMASS/Center for Clinical & Translational Science
May 22, 2012

Mary Savoye, RD, CD-N, CDE
Pediatric Endocrinology &
Yale Center for Clinical Investigation
Yale University School of Medicine
Funding/Disclosure

NIH Grants:
CTSA UL1 RR024139 R Sherwin
ARRA 3 ULI RR024139-04S2 R Sherwin
R01 HD40787 S Caprio

Gifts:
Esther Gross Estate (Unrestricted) M Savoye

Disclosure:
President, Smart Moves, LLC
Program Timeline

Each 12-week Session

- **Nutrition Education (1X wk)**
 - Children & Parents

- **Behavior Mod. (1X wk)**
 - Children

- **Parent Classes (1X wk)**
 - Parents

- **Exercise (2X wk)**
 - Children

Members are encouraged to complete consecutive 12-wk sessions
Smart Moves
Weight Management Curriculum

• 100-page workbook of nutrition & behavior modification topics for children
• Parent’s guide included in workbook
• Instructor’s manual to accompany workbook

A Look at Food Labels
Bag It!
Meals in the Fast Lane

Risky Business: Coping with High Risk Situations
Teasers, Bullies & Other Annoying People
Oops I Slipped!—Understanding a Relapse
Effects of a Weight Management Program on Body Composition and Metabolic Parameters in Overweight Children
A Randomized Controlled Trial

Mary Savoye, RD, CD-N, CDE
Melissa Shaw, BS
James Dziura, PhD
William V. Tamborlane, MD
Paulina Rose, RD, CD-N, CDE
Cindy Guandalini, APRN
Rachel Goldberg-Gell, APRN
Tania S. Burgert, MD
Anna M. G. Cali, MD
Ram Weiss, MD, PhD
Sonia Caprio, MD

Context Pediatric obesity has escalated to epidemic proportions, leading to an array of comorbidities, including type 2 diabetes in youth. Since most overweight children become overweight adults, this chronic condition results in serious metabolic complications by early adulthood. To curtail this major health issue, effective pediatric interventions are essential.

Objective To compare effects of a weight management program, Bright Bodies, on adiposity and metabolic complications of overweight children with a control group.

Design One-year randomized controlled trial conducted May 2002-September 2005.

Setting Recruitment and follow-up conducted at Yale Pediatric Obesity Clinic in New Haven, Conn, and intervention at nearby school.

Participants Random sample of 209 overweight children (body mass index [BMI] >95th percentile for age and sex), ages 8 to 16 years of mixed ethnic groups were recruited. A total of 135 participants (60%) completed 6 months of study, 119 (53%) completed 12 months.

Intervention Participants were randomly assigned to either a control or weight management group. The control group (n=69) received traditional clinical weight man-
Anthropometric Changes
Bright Bodies vs. Clinic

Change in Weight (kg)

At 6 and 12 months BB n=105, CC n=69 *p<0.001, Error bars represent 95% CI

Change in BMI (kg/m²)

Anthropometric Changes
Bright Bodies vs. Clinic

At 6 and 12 months BB n=105, CC n=69 *p<0.001, Error bars represent 95% CI

Insulin Sensitivity Changes
Bright Bodies vs. Clinic

At 6 and 12 months BB n=105, CC n=69 ***p<0.001, Error bars represent 95% CI

Was the treatment effect sustained at 2-yr follow up?

Mean BMI

<table>
<thead>
<tr>
<th>Months</th>
<th>Control</th>
<th>Bright Bodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>24</td>
<td>33</td>
<td>36</td>
</tr>
</tbody>
</table>

Treatment Effect = 2.96 (p < 0.05)
Long-term Results of an Obesity Program in an Ethnically Diverse Pediatric Population
Mary Savoye, Paulina Nowicka, Melissa Shaw, Sunkyung Yu, James Dziura, Georgia Chavent, Grace O'Malley, John B. Serrechia, William V. Tamborlane and Sonia Caprio

Pediatrics 2011;127;402-410; originally published online Feb 7, 2011;
DOI: 10.1542/peds.2010-0697
Changes from 6, 12, and 24 Months are from Baseline

Mary Savoye et al. *Pediatrics* 2011;127;402-410
Current Work: Prevention of Type 2 Diabetes In Children with Lifestyle Intervention

- Pediatric & Medical Associates
- Children’s Medical Group
- Hill Health Center
- Fair Haven Community Health Center
- Yale Center for Clinical Investigation

Goal is to compare IGT status of adolescents in Bright Bodies after 6 months in comparison to Standard of Care treatment (controls).
Risk factors of IGT (obese & other) → OGTT (IGT screen) → Yale OGTT (IGT validation) → Standard Education → Randomization → Bright Bodies → 2mo Clinic → 4mo Clinic → 2x/week → 6 Mo Yale OGTT
But how much does all this cost?
Program Expenses

Salaries

<table>
<thead>
<tr>
<th>Position</th>
<th>Hours/WK or FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director/Dietitian</td>
<td>15 hr/wk or 40% FTE</td>
</tr>
<tr>
<td>Coordinator</td>
<td>15 hr/wk or 40% FTE</td>
</tr>
<tr>
<td>Ex Physiologist A</td>
<td>6 hrs/wk</td>
</tr>
<tr>
<td>Ex Physiologist B</td>
<td>3 hrs/wk (or student)</td>
</tr>
<tr>
<td>Ex Physiologist C</td>
<td>student</td>
</tr>
<tr>
<td>Dietitian B</td>
<td>2 hrs/wk</td>
</tr>
<tr>
<td>Social Worker</td>
<td>2 hrs/wk</td>
</tr>
<tr>
<td>Technician</td>
<td>2 hrs/wk (or student)</td>
</tr>
</tbody>
</table>

Total Salary Expense: $63,000.
Program Expenses

Space $0.
(Celentano School, New Haven)

Supplies (first aid kit, prizes, etc.) $1,400.

Equipment
Tanita Scale, Stadiometer, HR Monitors
Balls, Cones, Flages, Jump Ropes
Resistant Tubing, Stretch Mats

$3,700.

Total Expenses $68,100.
Cost-Benefit Analysis

- $756 – 1,135 per child (cost ÷ 60-90 children/year) to decrease BMI -1.7 unit.

- $756 – 1,135 per child to decrease HOMA -1.52. If we use case-by-case analysis, ½ of the children went from IR to non-IR. The expense incurred if IR is not resolved in a child is much more peryear.

- Most people with type 2 diabetes have underlying IR.
So What Works?

- Parent Involvement (family approach) vs afterschool model
- A non-diet approach that offers long-term, life skills
- Inclusion of behavior modification topics
- Standardized, culturally-sensitive curriculum
- Professional staff with the help of students in related field

- Challenges: use of school vs own space, lack of or limited insurance reimbursement, transportation
Lessons Learned

• A comprehensive, well-established program takes YEARS to develop and show positive results

• Kids want to have fun exercising, not sit on a treadmill

• Kids want to be separated from their parents when talking about eating triggers, self image, other beh mod topics

• Kids do not want to be on a diet (like their parents)

• Transportation is an ongoing issue! Include transportation in your budget.
References

Special Thanks

Bright Bodies & clinic group families

Sonia Caprio, MD
Robert Sherwin, MD
Ram Weiss, MD, PhD
James Dziura, PhD
Paulina Rose, RD
Sylvia Lavietes, MSW
Rachel Gell, APRN
Lindsey Ertel, DPT
Esther Gross Estate

William V. Tamborlane, MD
Nicola Santoro, MD
Melissa Shaw, BS
Enit Colon
Brad Serrecchia, BS
Cindy Guandalini, APRN
Katie Marotto, BS
Mimmo Giannini, MD
National Institute of Health
Extra Slides
Baseline Characteristics of Children Randomized to Weight Management and Control Group

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>WMG</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-hisp, white</td>
<td>40 (38.1)</td>
<td>24 (34.8)</td>
</tr>
<tr>
<td>Non-hisp, black</td>
<td>40 (38.1)</td>
<td>27 (39.1)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>25 (23.8)</td>
<td>18 (26.1)</td>
</tr>
<tr>
<td>Female</td>
<td>59 (56.2)</td>
<td>47 (68.1)</td>
</tr>
<tr>
<td>Male</td>
<td>46 (43.8)</td>
<td>22 (31.8)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>11.9 (2.5)</td>
<td>12.4 (2.3)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>87.0 (25.1)</td>
<td>91.2 (23.3)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>155.2 (11.6)</td>
<td>157.7 (11.6)</td>
</tr>
<tr>
<td>BMI</td>
<td>35.8 (7.6)</td>
<td>36.2 (6.2)</td>
</tr>
<tr>
<td>Body fat %</td>
<td>47.0 (8.7)</td>
<td>45.8 (7.2)</td>
</tr>
<tr>
<td>Body Mass (kg)</td>
<td>42.1 (18.1)</td>
<td>42.4 (14.9)</td>
</tr>
</tbody>
</table>
Baseline Characteristics (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>WMG</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Pressure (mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>123 (13.6)</td>
<td>122 (14.0)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>66 (9.5)</td>
<td>67 (11.1)</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>167 (34.5)</td>
<td>158 (35.5)</td>
</tr>
<tr>
<td>HDL</td>
<td>44 (10.8)</td>
<td>43 (16.5)</td>
</tr>
<tr>
<td>LDL</td>
<td>98 (33.4)</td>
<td>92 (27.9)</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>104 (1.8)</td>
<td>101 (1.6)</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>92 (8.3)</td>
<td>90 (8.5)</td>
</tr>
<tr>
<td>Insulin (µIU/mL)</td>
<td>23 (1.8)</td>
<td>24 (1.7)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>5.1 (1.9)</td>
<td>5.2 (1.7)</td>
</tr>
</tbody>
</table>