Alexander Disease: Demonstration on Neuroimaging

Nilika S. Singhal
University of California, San Francisco

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/neurol_bull

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Neurological Bulletin by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
A 4-year-old boy with developmental delay presented after a seizure. Head circumference was 50th percentile; height and weight were 10th. CT and MRI demonstrated characteristic findings of Alexander disease (see figures).

Alexander disease\(^1,2\) is one of the heterogeneous group of diseases called leukodystrophies. Patients typically present with megalencephaly, psychomotor regression, ataxia, and seizure; adults may present with bulbar symptoms. It is most often caused by de novo mutations in the GFAP gene; toxic aggregates likely contribute to the classic histopathology of Rosenthal fibers. Imaging findings\(^3,4\) may not correlate with disease severity, leading to challenges in counseling patients.

References


Disclosure: the authors report no conflicts of interest.
Figure 1: Noncontrast head CT exhibiting bilateral symmetric diffuse deep white matter hypodensities, more marked in the frontal lobes.

Figure 2: T2 weighted MRI exhibiting diffuse predominantly frontal lobe subcortical white matter T2 prolongation with swelling and edema involving the lentiform nuclei. MR spectroscopy demonstrated elevated choline peak, decreased NAA peak, elevated lactate within the frontal white matter with increased myoinositol on short echo white matter spectra.