Medical abbreviations: writing little and communicating less.

Kathleen E. Walsh

University of Massachusetts Medical School

Et al.
Medical abbreviations: writing little and communicating less

Kathleen E Walsh and Jerry H Gurwitz

doi:10.1136/adc.2008.141473

Updated information and services can be found at:
http://adc.bmj.com/cgi/content/full/93/10/816

These include:

Rapid responses
You can respond to this article at:
http://adc.bmj.com/cgi/eletter-submit/93/10/816

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Pancreas and biliary tract (6404 articles)
- Pain (neurology) (29810 articles)
- Child health (25795 articles)
- Unwanted effects / adverse reactions (925 articles)
- Cystic fibrosis (825 articles)
- Diabetes (7831 articles)
- Metabolic disorders (11743 articles)

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Archives of Disease in Childhood go to:
http://journals.bmj.com/subscriptions/
Medical abbreviations: writing little and communicating less

Kathleen E Walsh,1,2 Jerry H Gurwitz2

The article by Sheppard and colleagues1 in the March issue of Archives of Diseases in Childhood describes the overuse of ambiguous abbreviations in paediatric note taking. Reading this article led one of us to review a clinical note written earlier in the day describing a “2 yo F here for a RPE w/a recent URI who c/o ear pain y/d”. On further inspection, this note was found to contain 35 abbreviations, all of which were completely unambiguous to the author when the note was written. However, many could certainly cause confusion should any other healthcare providers require information to make clinical decisions about this patient in the future.

Optimal communication between healthcare providers, frequently through our notes, is essential for supplying high quality care within and across clinical settings. With the involvement of greater numbers of healthcare professionals in the care of patients, and with provider responsibilities often restricted to either the hospital or ambulatory settings, substantial attention is being focused on improving handovers and transitions in medical care. Sheppard and colleagues1 have systematically detailed one important challenge to communicating written information about our patients, with serious implications. They describe the prolific use of ambiguous medical abbreviations in note taking. In their review of 25 paediatric handover sheets and 168 sets of medical notes, the authors identified 221 and 8668 abbreviations, respectively. Paediatric physicians were able to accurately recognise 56–94% of these. However, only about half of the abbreviations were understood by other healthcare professionals, such as ancillary staff or physicians from other disciplines. While this study was conducted in a single large general hospital in the UK and focused solely on paediatric note keeping, the findings are certainly generalisable to other patient populations, other clinical settings and other countries.

The use of abbreviations may hinder verbal as well as written communication. When speaking with families, physicians sometimes unintentionally slip into medical jargon, peppering their explanations and instructions with abbreviations. For example, when faced with a febrile infant, a physician trainee informed the already anxious parents that their child needed a “UA”, “LP” and “CBC” as part of the “work-up” to “rule out sepsis”; use of such language will clearly confuse family members. Written abbreviations on prescriptions or consult notes, such as “SOB” for shortness of breath, may also upset families. Abbreviations used in verbal communication of medication orders, such as “mils” or “m.l.s” for milliliters or “miggs” for milligrams are similarly problematic. Abbreviations which have two possible meanings seem to be particularly troublesome for healthcare providers reading notes written by someone from another discipline. For example, “BPD” can mean bronchopulmonary dysplasia or borderline personality disorder. Presumably, the age of the patient and context may help the reader differentiate between these conditions, but should that be necessary? Lastly, the use of abbreviations to describe a circumstance or condition may evolve over time, as exemplified by the change from MR (mental retardation) to DD (developmental delay) to CI (cognitively impaired).

Given that the use of abbreviations in medicine is pervasive, what are the clinical implications of this study? The authors suggest that paediatric notes should contain only standard abbreviations. While this seems a simple recommendation, the implementation and enforcement of such a policy for the very large number of different abbreviations the authors found in paediatric notes alone would be very cumbersome. Given that there is currently no evidence to link many of these abbreviations to actual patient harm, enforcing the use of a standard list of abbreviations may not be an efficient strategy for improving patient safety and healthcare quality.

A more practical approach, that can be enforced, is the prohibition of a limited number of clearly dangerous abbreviations which have caused patient harm or which have substantial risk of causing harm. Among the 2008 National Patient Safety Goals of the U.S. Joint Commission is the implementation of a prohibited abbreviations requirement, involving a list of 15 dangerous abbreviations (such as U, Q.D., Q.I.D.) that are
Cystic fibrosis and the transition to adult health services

Simon C Langton Hewer,1 Jennifer Tyrrell2

There is no other condition quite like cystic fibrosis (CF). Faulty genes that the parents usually did not know they carried have caused it. The newborn baby will usually be free of any problems, but the young child is likely to have problems with weight gain and with frequent respiratory infections. Once the diagnosis has been made, the family must learn a complex new set of rules: medication needs to be given several times every day, and chest physiotherapy must be learned and performed twice a day, sometimes more. The family and later the child need to become medical experts: they will need to recognise when they need to seek extra help from their CF team—how do they know when the child is coughing enough to need another appointment? They will need to learn to work with a whole range of willing and enthusiastic practitioners including doctors, nurses, physiotherapists, dieticians, psychologists, social workers and pharmacists. Not to mention the additional worries of school absences for inpatient and outpatient consultations. Then on top of that there are the family crises—not just the normal ones that all families will go through, but those when the child may grow Pseudomonas aeruginosa for the first time and a 2-week hospital admission is required, often with minimal advance notice. As the child grows up, they will be expected to learn more about their health and how to maintain it, with a gradual reduction in responsibility from their parents and the expectation that they will become largely independent of parental input.

There is convincing evidence in favour of improving survival for patients with CF, despite the fact that there is as yet no definitive treatment to cure the defect at a cellular level.1 2 This improved survival is a reflection in part of the improving and pro-active care provided during childhood. Continuous improvements in health and survival suggest that mean survival of recently born infants may be greater than 50 years (fig 1).3 New treatments are being developed that are expected to modify the course of the disease and further improve survival. The CF community eagerly awaits the results from these studies. Both paediatric and adult care is likely to become even more proactive with improving health surveillance and aggressive early management of complications. This should lead to further improvements in CF survival.

REFERENCES


Arch Dis Child October 2008 Vol 93 No 10

Cystic fibrosis and the transition to adult health services

Simon C Langton Hewer,1 Jennifer Tyrrell2

There is no other condition quite like cystic fibrosis (CF). Faulty genes that the parents usually did not know they carried have caused it. The newborn baby will usually be free of any problems, but the young child is likely to have problems with weight gain and with frequent respiratory infections. Once the diagnosis has been made, the family must learn a complex new set of rules: medication needs to be given several times every day, and chest physiotherapy must be learned and performed twice a day, sometimes more. The family and later the child need to become medical experts: they will need to recognise when they need to seek extra help from their CF team—how do they know when the child is coughing enough to need another appointment? They will need to learn to work with a whole range of willing and enthusiastic practitioners including doctors, nurses, physiotherapists, dieticians, psychologists, social workers and pharmacists. Not to mention the additional worries of school absences for inpatient and outpatient consultations. Then on top of that there are the family crises—not just the normal ones that all families will go through, but those when the child may grow Pseudomonas aeruginosa for the first time and a 2-week hospital admission is required, often with minimal advance notice. As the child grows up, they will be expected to learn more about their health and how to maintain it, with a gradual reduction in responsibility from their parents and the expectation that they will become largely independent of parental input.

There is convincing evidence in favour of improving survival for patients with CF, despite the fact that there is as yet no definitive treatment to cure the defect at a cellular level.1 2 This improved survival is a reflection in part of the improving and pro-active care provided during childhood. Continuous improvements in health and survival suggest that mean survival of recently born infants may be greater than 50 years (fig 1).3 New treatments are being developed that are expected to modify the course of the disease and further improve survival. The CF community eagerly awaits the results from these studies. Both paediatric and adult care is likely to become even more proactive with improving health surveillance and aggressive early management of complications. This should lead to further improvements in CF survival.

REFERENCES