BMI, Gestational Weight Gain and Angiogenic Biomarker Profiles for Preeclampsia Risk

Tiffany A. Moore Simas
University of Massachusetts Medical School

Et al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Clinical Epidemiology Commons, and the Obstetrics and Gynecology Commons

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Background

- In May 2009, after considering short and long-term maternal/child outcomes, the Institute of Medicine (IOM) revised recommendations for gestational weight gain (GWG), however preclampsia was dismissed due to insufficient evidence. (IOM 2009)
- Since change in recommendations, epidemiologic studies have since been published that support an association between GWG adherence and hypertensive disease of pregnancy. (AOG 2009;200(2):167.e1-7)
- Numerous studies have revealed adipose tissue's ability to stimulate angiogenesis. (Cardiovascular Res 2008;78(2):386-93)

Objective

To evaluate preclampsia risk by angiogenic-biomarker profile by both BMI and GWG-adherence.

Hypothesis

We hypothesized that overweight/obese (OW-OB) and over-gainers (OG) would have altered angiogenic profiles as compared to underweight-normal-weight (U-N) and under-/appropriate-gainers (U-AG), respectively.

Materials & Methods

- Pregnant subjects <24 weeks gestation enrolled from outpatient prenatal clinics at UMass Memorial Health Care between May 2004 and January 2006.
- Each subject had >31 BMI

Inclusion Criteria

RR

- Chronic HTN 2.37
- Renal Disease/COD -----
- Pregestational DM 3.56
- History of Preecclampsia 7.19
- Teen Pregnancy (<18) 2.98
- Multi-fetal gestation 2.93 (twins)
- Obesity (BMI > 30) 2.47
- APL Ab Syndrome 0.72
- SLE ----- (Duckitt K & Harrington D. BMI, 2005)

Exclusions

- Subjects included in analyses 82 (342 samples)
- Subjects recruited 127
- Subjects >24 weeks gestation enrolled from outpatient prenatal clinics at UMass Memorial Health Care between May 2004 and January 2006.
- Each subject had >31 BMI

BMI & GWG adherence categories by 1990 IOM recommendations

- Pre-pregnancy BMI* Total GWG at 40 weeks
 - Underweight (<19.0) 26.0-30.0
 - Normal weight (19.0-20.0) 22.0-27.0
 - Overweight (20.0-24.9) 21.0-25.9
 - Obese (≥25.0) 20.0-24.9

GWG Adherence Comparisons (see Figures 4–6)

- Mean sFlt1 lower in all windows in OG compared to U-AG (Figure 4)
- Mean PlGF lower in all windows in OG compared to U-AG (Figure 5)
- Mean ratio [(sFlt1+Eng):PlGF] trended higher in OG compared to U-AG at 31-36wks (Figure 6)

Limitations

- Small sample size required collapsing of BMI and GWG-adherence categories; thus unable to look at adherence within each BMI category
- Secondary analysis not powered for this exploratory analysis
- Only had total GWG at end of pregnancy

Table 1. Demographic comparisons

<table>
<thead>
<tr>
<th>Demographic Characteristic</th>
<th>Underweight</th>
<th>Normal</th>
<th>Overweight</th>
<th>Under/Propr Gain</th>
<th>Over-Gain</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean±SD</td>
<td>Mean±SD</td>
<td>Mean±SD</td>
<td>Mean±SD</td>
<td>Mean±SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.9±8.5</td>
<td>31.1±6.6</td>
<td>25.9±7.4</td>
<td>25.9±7.4</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.1±10.2</td>
<td>27.5±10.2</td>
<td>27.1±10.2</td>
<td>27.1±10.2</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5±10.2</td>
<td>27.5±10.2</td>
<td>27.5±10.2</td>
<td>27.5±10.2</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Results

- Analytic sample included 82 subjects (342 specimens). See Table 1 for Demographic Comparisons.
- BMI Comparisons (see Figures 1–3)
 - Mean sFlt1 lower in all windows in OW-OB compared to U-N (Figure 1)
 - Mean PlGF lower in all windows in OW-OB compared to U-N (Figure 2)
 - Mean ratio [(sFlt1+Eng):PlGF] trended higher in OW-OB compared to U-N women at 27-30 and 31-36wks (Figure 3)

1. Geometric mean sFlt1 (95% CI)
2. Geometric mean PlGF (95% CI)
3. Geometric mean [(sFlt1+Eng)/PlGF] (95% CI)

4. Geometric mean sFlt1 (95% CI)
5. Geometric mean PlGF (95% CI)
6. Geometric mean [(sFlt1+Eng)/PlGF] (95% CI)

Figure 1-3. Angiogenic biomarker profiles comparing under-/normal-weight to overweight/obese at 3 gestational age windows

4. Geometric mean sFlt1 (95% CI)
5. Geometric mean PlGF (95% CI)
6. Geometric mean [(sFlt1+Eng)/PlGF] (95% CI)

4. Geometric mean sFlt1 (95% CI)
5. Geometric mean PlGF (95% CI)
6. Geometric mean [(sFlt1+Eng)/PlGF] (95% CI)

4. Geometric mean sFlt1 (95% CI)
5. Geometric mean PlGF (95% CI)
6. Geometric mean [(sFlt1+Eng)/PlGF] (95% CI)

4. Geometric mean sFlt1 (95% CI)
5. Geometric mean PlGF (95% CI)
6. Geometric mean [(sFlt1+Eng)/PlGF] (95% CI)