Cohort Studies and Relative Risks

Richard Ssekitoleko

Yale University

Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer

Part of the Clinical Epidemiology Commons, Epidemiology Commons, Family Medicine Commons, Infectious Disease Commons, Medical Education Commons, and the Statistics and Probability Commons

Repository Citation

https://escholarship.umassmed.edu/liberia_peer/14

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Cohort studies and Relative risks

Richard Ssekitoleko
Objectives

• Define a cohort study and the steps for the study
• Understand the populations in a cohort study
• Understand timing in a cohort study and the difference between retrospective, prospective and ambi-directional cohort studies
• Understand the selection of the cohort population and the collection of exposure and outcome data
• Understand the sources of bias in a cohort study
• Understand the calculation and interpretation of the relative risk
• Understand use of the new-castle Ottawa quality assessment score for cohort studies
Hierarchy of Evidence

- Study type
 - Observational
 - Descriptive
 - Ecological
 - Cross-sectional
 - Case-control
 - **Cohort**
 - Interventional
 - Experiment
 - Randomised Controlled Trial
Study designs and the basic principles

- Randomised controlled trial

- **Cohort study** (Also called Longitudinal, follow up or Incidence study)

- Case-control study

- Cross-sectional study

- Ecological study
Cohort studies

• Observational study type

• Steps in a cohort study
 • Define the target population
 • Get a sample of the target population
 • Identify the exposure status of the sampled members
 • Follow up the members over time to identify new (incident cases) of the disease (outcome)
 • Compare the risk of the outcome in those who are exposed at baseline to those who are not exposed (Risk Ratio)
Populations studied in Cohort studies

• Open/Dynamic cohort
 • Individuals may enter or leave at anytime
 • losses may occur
 • Defined by changeable characteristic
 • Measure incidence rate

• Fixed Cohort
 • Irrevocable event
 • Does not gain members/Losses may occur
 • Measure incidence rate

• Closed cohort
 • Irrevocable event
 • Does not gain members; no losses occur
 • Measure cumulative incidence
Timing of cohort studies

• Events in a cohort study defined by 3 terms

 • Prospective/ concurrent: Meaning to look forward in time

 • Retrospective: Meaning to look back in time

 • Ambidirectional: Meaning to look both ways

Figure 2: Schematic diagram of concurrent, retrospective, and ambidirectional cohort studies. Grimes et al. Lancet 2002;359:341-45
Derivation and validation of a universal vital assessment (UVA) score: a tool for predicting mortality in adult hospitalised patients in sub-Saharan Africa

Christopher C Moore,1 Riley Hazard,2 Kacie J Saulters,3 John Ainsworth,4 Susan A Adakun,5 Abdallah Amir,6 Ben Andrews,7 Mary Auma,6 Tim Baker,6 Patrick Banura,9 John A Crump,10 Martin P Grobusch,11 Michaëla A M Huson,11 Shevin T Jacob,12 Olamide D Jarrett,13 John Kellett,14 Shabir Lahi,15 Albert Majwala,6 Martin Opio,16 Matthew P Rubach,17 Jamie Rylance,18 W Michael Scheld,1 John Schieffelin,15 Richard Ssekitoleko,5 India Wheeler,16 Laura E Barnes20

BMJ Glob Health
Retrospective cohort example

• Derivation and validation of a universal vital assessment score

• Methods: Pooled data from hospital based cohort studies from 2009 to 2015
• Analysis involved 5573 patients

• Exposure: Baseline UVA score

• Outcome: Inpatient mortality 996 (17.3%)

• Temporal association between exposure and outcome clear

• By time study occurred both exposures and outcomes had occurred

• Lots of missing data with imputation → Information bias
• 2829 (50.8%) were female.

• Median (IQR) age was 36 (27–49) years

• The UVA score included points for temperature, heart and respiratory rates, systolic blood pressure, oxygen saturation, GCS and HIV serostatus.

• The UVA score had an area under the receiver operating characteristic curve (AUC) of 0.77 (95% CI 0.75 to 0.79)

• UVA score Outperformed other scoring systems (MEWS and qSOFA)

• UVA score could help with triage decisions in the study settings
<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n=5573)</th>
<th>Survived (n=4607)</th>
<th>Died in-hospital (n=966)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>2829 (50.8)</td>
<td>2323 (50.4)</td>
<td>506 (52.4)</td>
<td>0.27</td>
</tr>
<tr>
<td>Age (years), median (IQR)</td>
<td>36 (27–49)</td>
<td>36 (26–50)</td>
<td>36 (29–46)</td>
<td>0.20</td>
</tr>
<tr>
<td>Temperature (°C), median (IQR)</td>
<td>37.4 (36.3–38.5)</td>
<td>37.4 (36.3–38.5)</td>
<td>37.6 (36.2–38.4)</td>
<td>0.36</td>
</tr>
<tr>
<td>Heart rate (bpm), median (IQR)</td>
<td>100 (85–120)</td>
<td>100 (84–116)</td>
<td>110 (92–128)</td>
<td><0.001</td>
</tr>
<tr>
<td>Respiratory rate (bpm), median (IQR)</td>
<td>26 (22–32)</td>
<td>24 (20–32)</td>
<td>30 (24–40)</td>
<td><0.001</td>
</tr>
<tr>
<td>SBP (mm Hg), median (IQR)</td>
<td>100 (90–120)</td>
<td>100 (90–120)</td>
<td>90 (80–110)</td>
<td><0.001</td>
</tr>
<tr>
<td>DBP (mm Hg), median (IQR)</td>
<td>62 (55–60)</td>
<td>65 (60–80)</td>
<td>60 (50–70)</td>
<td><0.001</td>
</tr>
<tr>
<td>Oxygen saturation (%), median (IQR)</td>
<td>96 (94–98)</td>
<td>96 (94–98)</td>
<td>96 (93–98)</td>
<td><0.001</td>
</tr>
<tr>
<td>GCS score, median (IQR)</td>
<td>15 (15–15)</td>
<td>15 (15–15)</td>
<td>15 (13–15)</td>
<td><0.001</td>
</tr>
<tr>
<td>HIV-infected, n (%)</td>
<td>2122 (38.1)</td>
<td>1537 (33.4)</td>
<td>585 (60.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD4 (cells/μL), median (IQR)</td>
<td>72 (23–156)</td>
<td>79 (28–175)</td>
<td>46 (14–112)</td>
<td><0.001</td>
</tr>
<tr>
<td>WBC (103/μL), median (IQR)</td>
<td>6.0 (3.7–9.7)</td>
<td>6.1 (3.9–9.7)</td>
<td>5.6 (3.1–9.7)</td>
<td>0.003</td>
</tr>
<tr>
<td>Haemoglobin (g/dL), median (IQR)</td>
<td>10.1 (7.8–12.2)</td>
<td>10.4 (8.1–12.5)</td>
<td>8.7 (6.9–11.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Platelets (103/μL), median (IQR)</td>
<td>180 (105–270)</td>
<td>188 (113–275)</td>
<td>159 (81–256)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lactate (mmol/L), median (IQR)</td>
<td>3.5 (2.4–4.9)</td>
<td>3.3 (2.4–4.5)</td>
<td>4.2 (2.7–6.1)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

bpm, beats per minute; bpm, breaths per minute; CD, cluster of differentiation; DBP, diastolic blood pressure; GCS, Glasgow Coma Scale; SBP, systolic blood pressure; WBC, white blood cell concentration.
Hypoglycemia at admission is associated with in-hospital mortality in Ugandan patients with severe sepsis

Richard Ssekitoleko, MBChB, MMed; Shevin T. Jacob, MD, MPH; Patrick Banura, MBChB, MPH; Relana Pinkerton, PhD; David B. Meya, MBChB, MMed; Steven J. Reynolds, MD, MPH; Nathan Kenya-Mugisha, MBChB; Harriet Mayanja-Kizza, MBChB, MS; Rose Muhindo, MBChB, MMed; Sanjay Bhagani, MBBS; W. Michael Scheld, MD; Christopher C. Moore, MD, FACP

Crit Care Med 2011 Vol. 39, No. 10
Prospective cohort example

- Prospective observational study on patients with Sepsis in 3 Ugandan hospitals.

- Analysis involved 418 admitted patients

- Exposure: Admission blood glucose concentration

- Outcome: In hospital mortality 113(27%)

- Measure of association: Hazard ratio

- Results: Significantly higher rates of mortality in patients with hypoglycemia: HR 95% CI 1.9(1.1-3.3)
Table 3. Univariate predictors of survival meeting ≤0.30 criteria and final multivariate model results using Cox regression

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Survived</th>
<th>Died</th>
<th>Hazard Ratio (95% Confidence Interval) and p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Univariate</td>
</tr>
<tr>
<td>Admission glucose concentration, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglycemia (4.4–6.1 mmol/L)</td>
<td>113 (80.7)</td>
<td>27 (19.3)</td>
<td>2.0 (1.2–3.6)</td>
</tr>
<tr>
<td>Hypoglycemia (<4.4 mmol/L)</td>
<td>44 (64.7)</td>
<td>24 (35.3)</td>
<td>1.5 (0.96–2.4)</td>
</tr>
<tr>
<td>Hyperglycemia (>6.1 mmol/L)</td>
<td>148 (70.5)</td>
<td>62 (29.5)</td>
<td></td>
</tr>
<tr>
<td>AMS, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No AMS</td>
<td>274 (77.6)</td>
<td>79 (22.4)</td>
<td>2.5 (1.6–3.7)</td>
</tr>
<tr>
<td>AMS</td>
<td>31 (47.7)</td>
<td>34 (52.3)</td>
<td></td>
</tr>
<tr>
<td>White blood cell count, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4,000 to ≤12,000 cells/μL</td>
<td>162 (79.8)</td>
<td>41 (20.2)</td>
<td>1.7 (1.1–2.4)</td>
</tr>
<tr>
<td><4,000 or >12,000 cells/μL</td>
<td>136 (67.0)</td>
<td>67 (33.0)</td>
<td></td>
</tr>
<tr>
<td>Heart rate, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤90 beats/min</td>
<td>18 (85.7)</td>
<td>3 (14.3)</td>
<td>1.9 (0.60–6.0)</td>
</tr>
<tr>
<td>>90 beats/min</td>
<td>286 (72.4)</td>
<td>109 (27.6)</td>
<td></td>
</tr>
<tr>
<td>Bacteremia or fungemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>248 (74.7)</td>
<td>84 (25.3)</td>
<td>1.3 (0.88–2.0)</td>
</tr>
<tr>
<td>Positive</td>
<td>57 (66.3)</td>
<td>29 (33.7)</td>
<td></td>
</tr>
<tr>
<td>Platelets, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥100,000 cells/μL</td>
<td>245 (79.5)</td>
<td>63 (20.5)</td>
<td>2.4 (1.6–3.5)</td>
</tr>
<tr>
<td><100,000 cells/μL</td>
<td>48 (52.2)</td>
<td>44 (47.8)</td>
<td></td>
</tr>
<tr>
<td>Hospital site, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulago or Masaka</td>
<td>249 (77.3)</td>
<td>73 (22.7)</td>
<td>2.4 (1.6–3.5)</td>
</tr>
<tr>
<td>Mbarara</td>
<td>56 (58.3)</td>
<td>40 (41.7)</td>
<td></td>
</tr>
</tbody>
</table>
• Temporal association between admission blood glucose and mortality clear

• Researchers identified baseline exposures and then followed up patients (Prospective observational study)
Selecting the cohort population

• Based on study hypothesis
 • Guided by the exposure to be studied e.g smokers vs non smokers

• May be population based cohort based on common exposures e.g smoking, alcohol consumption, exercise and common chronic illnesses

• May be exposure based e.g occupational groups such as road builders
Collection of Exposure and Outcome data

• Study outcomes have not occurred at the beginning of the cohort follow up period.

• Exposures of interest may vary during the study period.
 • May be present at the beginning
 • May occur during the study
 • May stop during the study period

• Temporal association between exposure and outcome is clear
Study population

• At the beginning of follow up all cohort members should be alive not have the outcome of interest

• All members should be at risk of getting the outcome of interest
 • E.g In a study of women involving an outcome of uterine ca, one cannot include women who had a hysterectomy at baseline
Comparison populations in cohort studies

• **Single cohort**
 - Members of a single population are classified by levels of exposure
 - Comparison group is unexposed or less exposed group
 - Need to account for confounding factors
 - Common exposures: alcohol, smoking, exercise

• **Double cohort**
 - Involves an exposed population and an unexposed population
 - Comparison group may be the general population
Sources of exposure information

• Data may be collected routinely during follow up period

• Sources of data
 • Participant interviews
 • Monitoring data from home or workplace
 • Laboratory monitoring
 • Medical records
Outcome data in a cohort study

- Reports of symptoms and signs
- Medical assessment results
- Medical records
- Disease registry results
- Medical examination results
- Death certificates
Follow up in a cohort study

• All participants need to be tracked throughout the study
 • To get their true outcome
 • To get their person time contribution to the study

• Loss to follow up is a form of bias and reduces validity of results
 • Decreased sample size reducing ability of the study to detect an association if present
 • Those lost to follow up may differ in important ways from those who stay

• May occur due to death, change of residence, migration or participant decision to stop taking part in the study
Minimizing loss to follow up in a cohort study

• Explain need to follow up with participants at start

• Get contact details for participant, friends, relatives or physician

• Maintain regular follow up (Mail, phone or personal contact)

• Follow up on non responses and disappearances promptly

• Offer incentives for follow up e.g transport refund
Analysis in a cohort study

- Need to calculate incidence in the exposed and unexposed groups
- May calculate cumulative incidence or incidence density rate depending on the available information
- Comparing incidence in the exposed and unexposed groups will enable estimation of the relative risk
Risk Ratio (relative risk)

\[
\frac{\text{RISK of outcome occurrence in exposed}}{\text{RISK of outcome occurrence in unexposed}} = \text{Risk Ratio (RR)}
\]

- RR > 1 suggests exposure predisposes to outcome
- RR < 1 suggests exposure protects against outcome
- RR = 1 is null and indicates no association between exposure and outcome
Interpreting the relative risk

• Gives the strength of association between the exposure and outcome

• May not be causal

• Could be explained by random error, confounding or bias

• May represent the cumulative incidence ratio or the incidence density ratio depending on how it is calculated
Risk Ratio Calculations

If, after follow up, the following is seen:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>d₁</td>
<td>h₁</td>
<td>n₁ = d₁ + h₁</td>
</tr>
<tr>
<td>Unexposed</td>
<td>d₀</td>
<td>h₀</td>
<td>n₀ = d₀ + h₀</td>
</tr>
<tr>
<td>Total</td>
<td>dₜ = d₁ + d₀</td>
<td>hₜ = h₁ + h₀</td>
<td>nₜ = dₜ + hₜ</td>
</tr>
</tbody>
</table>

Then, Simple Cumulative incidence(risk ratio(RR)) = \[
\frac{\text{risk in exposed}}{\text{risk in unexposed}} = \frac{\frac{d₁}{n₁}}{\frac{d₀}{n₀}}
\]
Simple Cumulative incidence example

- The table below summarizes a population of 1000 subjects with respect to a particular disease D broken down by sex.

<table>
<thead>
<tr>
<th>Disease</th>
<th>D</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>140</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>Women</td>
<td>180</td>
<td>620</td>
<td>800</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>680</td>
<td>1000</td>
</tr>
</tbody>
</table>

- What is the relative risk of getting the disease associated with being a man as opposed to being a woman?

Relative risk = Risk of disease in men / Risk in women = \(\frac{140}{200}/\frac{180}{800}\) = 0.7 / 0.225 = 3.1
Odds ratios and risk ratios

• How do you interpret the relative risk?
 The risk of getting the disease in males is 3.1 times the risk of getting the disease in females

• What is the odds ratio for the disease among men as opposed to women?
 Odds of the disease in men: Odds = Risk of disease in men/risk of no disease in men = (140/200)/(60/200) = 0.7/0.3 = 2.3
 Odds of the disease among women: Probability of disease in women/Probability of no disease = (180/800)/(620/800) = 0.29
 The odds ratio for disease associated with being a man as opposed to a woman. Odds ratio = Odds in men/Odds in women = 2.3/0.29 = 7.93

• In which type of study is the odds ratio the preferred measure of association?
• Compare the risk ratio to the odds ratio. What do you conclude?
Incidence density

- Person-time at risk
 - Length of time for each individual that they are in the population at risk
 - Sum of person time for each individual during their stay in study is the total person-time
- When a person is no longer at risk, they no longer contribute to person time e.g. when they get the outcome
- Incidence density
 - Rate of occurrence of new cases of disease during person time of observation in a population at risk of getting the disease
 - Numerator = Number of new cases of disease
 - Denominator = Total person time of observation in population at risk
- A rate and the units are Inverse time (1/time)
Incidence density ratio

- Incidence density ratio = Incidence density in exposed group/Incidence density in unexposed group

<table>
<thead>
<tr>
<th></th>
<th>Total person time of observation</th>
<th>Number of persons with outcome</th>
<th>Incidence density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed group</td>
<td>A</td>
<td>C</td>
<td>C/A</td>
</tr>
<tr>
<td>Unexposed group</td>
<td>B</td>
<td>D</td>
<td>B/D</td>
</tr>
</tbody>
</table>

- Incidence density ratio = (C/A)/(B/D)
Incidence rate ratio example

A study examined mortality among homeless shelter residents in New York City from 1987 to 1994. There were 15 deaths observed among women aged 25-34, with 728 person-years of observation. Among men aged 25-34, 31 deaths were observed, with 1988 person-years of observation. ([Am J Public Health.](https://www.ncbi.nlm.nih.gov/pubmed/10160595) 1999 Apr;89(4):529-34).

<table>
<thead>
<tr>
<th>Gender</th>
<th>Death</th>
<th>Person-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>15</td>
<td>728</td>
</tr>
<tr>
<td>Men</td>
<td>31</td>
<td>1988</td>
</tr>
</tbody>
</table>
• The measure of relative risk appropriate for this data is the Incidence density ratio.
 • Incidence density = number of new cases/total person time at risk

• The relative risk of mortality among women aged 18-24 compared to men aged 18-24 is the incidence density ratio and is given by:
 Incidence density women/Incidence density men
 =(15/728)/(31/1988)=1.32

• Interpretation
 • The rate of mortality among women was 1.32 times the rate of mortality among men in New York City between 1987 and 1994.

• What is the difference between the Incidence density ratio and the cumulative incidence ratio?

• How do we get the person time?
Limitations of cohort studies

• Measurement error (A form of information bias)
 • Commonly errors in exposure measurement
 • Errors in outcome assessment (People may die from competing risks, actual onset of the disease may be missed)

• Confounding- Occurs when a factor is causally associated with both the outcome and exposure under study

• Selection bias (To the different groups and loss to follow up)

• Loss to follow-up (A form of selection bias)
 • If it is related to the exposure or outcome of interest
 • May be differential or non-differential
Loss to follow-up

• A problem with cohort studies is loss to follow-up

• Loss to follow-up may be non-differential i.e. not related to exposure and outcome

• Or differential i.e. is related to exposure and/or outcome. e.g. subjects with poor education who contract HIV die very quickly and do not present to health centres or hospitals. Affects the measure of effect
Cohort Studies

Advantages

• Clear temporal relationship: between exposure and outcome (Compare cross sectional studies)
• Good for rare exposures
• Can evaluate multiple effects of an exposure
• Can minimise biases in exposure measurement
• Directly measures disease incidence or risk

Disadvantages

• Usually expensive and Time consuming (Prospective)
• Poor information on exposures and other key variables (Retrospective)
• Inefficient for disease with long induction and latent periods (Prospective)
• Bias/ confounding
• Changes over time can affect exposure and disease classification
Critical review for cohort studies

https://doi.org/10.5124/jkma.2011.54.4.419

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE COHORT STUDIES

Note: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability.

<table>
<thead>
<tr>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Representativeness of the exposed cohort</td>
</tr>
<tr>
<td>a) truly representative of the average ________ (describe) in the community ★</td>
</tr>
<tr>
<td>b) somewhat representative of the average ________ in the community ★</td>
</tr>
<tr>
<td>c) selected group of users eg nurses, volunteers</td>
</tr>
<tr>
<td>d) no description of the derivation of the cohort</td>
</tr>
<tr>
<td>2) Selection of the non exposed cohort</td>
</tr>
<tr>
<td>a) drawn from the same community as the exposed cohort ★</td>
</tr>
<tr>
<td>b) drawn from a different source</td>
</tr>
<tr>
<td>c) no description of the derivation of the non exposed cohort</td>
</tr>
<tr>
<td>3) Ascertainment of exposure</td>
</tr>
<tr>
<td>a) secure record (eg surgical records) ★</td>
</tr>
<tr>
<td>b) structured interview ★</td>
</tr>
<tr>
<td>c) written self report</td>
</tr>
<tr>
<td>d) no description</td>
</tr>
<tr>
<td>4) Demonstration that outcome of interest was not present at start of study</td>
</tr>
<tr>
<td>a) yes ★</td>
</tr>
<tr>
<td>b) no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Comparability of cohorts on the basis of the design or analysis</td>
</tr>
<tr>
<td>a) study controls for ________ (select the most important factor) ★</td>
</tr>
<tr>
<td>b) study controls for any additional factor ★ (This criteria could be modified to indicate specific control for a second important factor.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Assessment of outcome</td>
</tr>
<tr>
<td>a) independent blind assessment ★</td>
</tr>
<tr>
<td>b) record linkage ★</td>
</tr>
<tr>
<td>c) self report</td>
</tr>
<tr>
<td>d) no description</td>
</tr>
<tr>
<td>2) Was follow-up long enough for outcomes to occur</td>
</tr>
<tr>
<td>a) yes (select an adequate follow up period for outcome of interest) ★</td>
</tr>
<tr>
<td>b) no</td>
</tr>
<tr>
<td>3) Adequacy of follow up of cohorts</td>
</tr>
<tr>
<td>a) complete follow up - all subjects accounted for ★</td>
</tr>
<tr>
<td>b) subjects lost to follow up unlikely to introduce bias - small number lost - > ___ % (select an adequate %) follow up, or description provided of those lost ★</td>
</tr>
<tr>
<td>c) follow up rate < ___ % (select an adequate %) and no description of those lost</td>
</tr>
<tr>
<td>d) no statement</td>
</tr>
</tbody>
</table>
References

• Essentials of Epidemiology in Public health: Ann Aschengrau and George R Seage

• Introduction to the field of Statistics: David S Moore, George P McCabe and Bruce A Craig.
Acknowledgements

• Jack Colford: School of Public Health. University of California, Berkeley
• Michael Bates: School of Public Health. University of California, Berkeley.
• Sarah Lewis: Department of Social Medicine. University of Bristol UK.