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Ridge regression for longitudinal data 
with application to biomarkers
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Technological advances facilitating the acquisition of large arrays of biomarker data have 
led to new opportunities to study disease progression based on individual-level 
characteristics. This creates an analytical challenge, however, due to the large number of 
potentially informative markers, the high degrees of correlation among them, and 
changes that occur over time. To address these issues, we propose a mixed-ridge 
estimator which integrates ridge regression into the mixed model framework in order to 
account for both the correlation induced by repeatedly measuring the outcome on each 
individual over time, as well as the potential high degree of correlation among predictor 
variables. An extension of the EM algorithm is described to account for unknown 
variance/covariance parameters. A simulation study is conducted to illustrate model 
performance and a data example is provided. 

We predict that the mixed ridge estimator will result in somewhat biased coefficients with 
smaller standard deviations than those of the mixed model without ridge component. This 
will result in an improvement of power over the mixed model when correlations among 
predictors are sufficiently high, while type I error rates are maintained at about 0.05 for 
both methods. 

Motivation

Problem: Predictor variables highly correlated → no unique solution to least squares and 
maximum likelihood estimates, or resulting coefficient estimates have inflated variances 
resulting in low predictive precision.

Solution: Ridge regression for longitudinal data, which we call the mixed ridge (MR) 
estimator. 

Mixed ridge model

Linear mixed effects model given by                                        ,                                        for 
individual                        with        observations,                                ,                                 
Then                                              where V is the variance of Y.

Add ridge component to linear mixed effects model and solve   

(1) 

Solution to (1) is given by

(2)

Additionally,                                                                                            and  

Using the GCV method proposed by Craven and Wahba (1979) we can estimate λ by solving

(3)

Where 

EM algorithm

Consider the setting in which the variance parameters                    are unknown.  We propose an 
extension of the expectation-maximization (EM) algorithm described by Laird and Ware (1982) that 
includes an additional step for estimation of the ridge component. The algorithm proceeds as 
follows:

Testing

To determine the significance of each predictor variable, we calculate Wald statistics by dividing 
each estimated coefficient by the square root of its variance. Since an EM algorithm is used, we use 
Louis' formula (Louis 1982) to determine variance. Finally, Westfall and Young's (1993) free step-
down resampling approach is applied to adjust for multiple testing. 

Simulation Study

A simulation study is performed to characterize the relative performances of mixed ridge regression 
and the usual mixed effects modeling approach in the context of multiple, correlated predictors. For 
simplicity we assume repeatedly measured outcomes and only baseline predictors. We let             
measurements per subject and generate data according to the mixed-effects model, where                                          

,                          , and                         . Each predictor is assumed to arise 
from a Normal distribution with mean 5 and variance 1. The correlation between predictor variables 
(ρ) takes on values between 0 and 0.99. Starting values for variance components are derived from 
fitting a mixed model with no ridge component. In total M = 500 simulations are conducted for each 
correlation with sample sizes of n = 500 individuals. 

Data Example

The GENE (Genetics of Evoked-Responses to Niacin and Endotoxemia) study is an ongoing trial 
designed to characterize the effects of genetic factors on the response to niacin therapy and 
endotoxin. Healthy volunteers were given endotoxin, which produces a mild-inflammatory 
response that can last from 6-8 hours. At certain  time points during a 24-hour period, vital signs 
such as blood pressure and temperature were measured, as well as Tumor necrosis factor-alpha 
(TNF), Apolipoprotein A1 (Apo-A1), Apolipoprotein B (Apo-B), Cholesterol (Chol) High-density 
lipoprotein (HDL), Low-density lipoprotein (cLDL), Phospholipids (Phos), and Triglycerides (Tri). 

Table 1

Table 1: Comparison of MR and Mixed model for simulation study. As correlation among columns increases, power of mixed model decreases more rapidly 
than that of MR. MR coefficients tend to have smaller variance and slight bias; however, type I error rates are roughly the same. Figure 1: Plot of power over 
correlations when β=0.20. At about ρ = 0.80, MR begins to significantly outperform mixed model. Table 2: Comparison of MR and mixed model 
for data example. At the 0.05 level, MR finds 2 variables to be significant, compared with 1 variable for the mixed model. Correlations among predictors are as 
high as 0.90, so we expect the addition of the ridge component to improve prediction ability. Figure 2: Normal QQ plot of t-statistics for MR. Points circled in 
red are significant for MR, while the point circled in gray is significant for the mixed model. 

Figure 1

Table 2

Figure  2

MR outperforms the mixed model without ridge component when correlations among predictor 
variables are sufficiently large. The simulation study shows that when correlations are greater 
than about 0.80, power of MR is higher than that of the mixed model without a significant 
increase in type I error rate. At lower correlations, MR works just as well as the mixed model. 
The GENE study data set included predictors with correlation coefficients as high as 0.95, and 
subjects were measured 2 to 4 times each. Due to the high correlation, mixed modeling resulted 
in inflated variances of coefficients, and thus low power. The MR approach identified APOb as 
significantly associated with BP over time while the usual mixed modeling approach was unable 
to detect this association.      
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The data arising from this study is longitudinal with predictors with correlation coefficients of up to 
0.95, which indicates that MR regression is appropriate. We perform the analysis using the lipid 
measurements at times 0, 6, 12, and 24 hours as predictors and systolic blood pressure as outcome. 
Because we expect that change in systolic blood pressure between times 0-6, 6-12, and 12-24 hours is 
piecewise-linear, we use linear splines (Fitzmaurice, et. al) with “knots” or change points at times 6 
and 12. Also included are random within-subject effects for intercept and slope. MR is compared with 
the mixed model, after p-values are adjusted for multiple testing using the Westfall and Young 
approach. 
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