Online Sharing of Documents: the Mobile Office

Rebecca Sulyma
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer

Part of the Databases and Information Systems Commons, Family Medicine Commons, Infectious Disease Commons, Library and Information Science Commons, and the Medical Education Commons

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Online sharing of documents: the mobile office

REBECCA SULYMA
SANJAY RAM
STEVEN HATCH
Goals

Review major cloud-based office programs
Explain basics of “cloud computing”
Provide brief introduction to how filesharing is used
Supply links for further information
Common programs used for research and research administration

<table>
<thead>
<tr>
<th>Google</th>
<th>Microsoft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docs</td>
<td>Word</td>
</tr>
<tr>
<td>Sheets</td>
<td>Excel</td>
</tr>
<tr>
<td>Slides</td>
<td>PowerPoint</td>
</tr>
</tbody>
</table>

(This presentation is PowerPoint)
Google Docs and MS Word
Google *Docs* (and MS Word) are good for...

- Letters
- Lists
- Research proposals
- Manuscripts
- Resumés/CVs
- Also can check your spelling & grammar
Research Workshop II
February 25th through March 1st, 2019.
JFK Main Conference Room

Monday February 25th, 2:00 – 6:00 pm

Introduction to Workshop II:
Course objectives, pre-workshop evaluation
Patricia McQuilkin, MD, MS
University of Massachusetts Medical School

Research software and technology
Use of Google docs, Dropbox, and other helpful technology

Steve Hatch, MD, MS
Research Workshop II
February 25th through March 1st, 2019.
JFK Main Conference Room
• Make connection between failure and inquiry
• Roots basis of inquiry
• Role of the teacher

According to Janume Fouche (2013), productive failure can be validated through the use of inquiry based instruction. In inquiry learning, students investigate a meaningful problem, generate and implement strategies to solve the problem, evaluate their results, and continue to try new approaches until the problem is solved (Barron & Hammou, 2008). Failure is an inevitable effect of this strategy and deserves high regard, for failure is fundamental in the learning process. “It can be the failures that leave the biggest impression and impact on our ability to succeed” (Mcintosh, 2012, p. 44). By embracing inquiry based instruction in the classroom, teachers are empowering students to take control of their own learning through trial and error. The teacher's role shifts from directly instructing students, to guiding them through a process of discovery by actively questioning observations, reasoning, and conclusions (Barron & Hammou, 2008). “Within a supportive classroom learning community, failure is not a roadblock but an opportunity for success” (Fouche, 2013, p. 49).
Google Sheets and MS Excel
Google Sheets (and MS Excel) are good for...

Recording data with multiple variables
Making spreadsheets that can sort and store data
Creating budgets
<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Item Description</th>
<th>Unit</th>
<th>Qty.</th>
<th>Unit Rate</th>
<th>Amount</th>
<th>Reference</th>
<th>Result</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25/10/2017</td>
<td>Safety Helmet</td>
<td>Pcs.</td>
<td>15</td>
<td>2.00</td>
<td>30.00</td>
<td>Coverall</td>
<td>2</td>
<td>=match(J2,C2,C12,0)</td>
</tr>
<tr>
<td>J</td>
<td>24/10/2017</td>
<td>Coverall</td>
<td>Nos.</td>
<td>30</td>
<td>4.00</td>
<td>120.00</td>
<td>2</td>
<td>=match(&quot;Coverall&quot;,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>22/10/2017</td>
<td>Illuminated Jacket</td>
<td>Pcs.</td>
<td>20</td>
<td>1.50</td>
<td>30.00</td>
<td>2</td>
<td>=match(&quot;Coverall&quot;,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>16/10/2017</td>
<td>Pug Cutting Machine</td>
<td>Nos.</td>
<td>3</td>
<td>1460.00</td>
<td>4380.00</td>
<td>2</td>
<td>=match(J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>12/10/2017</td>
<td>Flashback Arrester</td>
<td>Sets</td>
<td>3</td>
<td>33.00</td>
<td>99.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>02/10/2017</td>
<td>Safety Helmet</td>
<td>Pcs.</td>
<td>15</td>
<td>2.00</td>
<td>30.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>12/09/2017</td>
<td>Safety Helmet</td>
<td>Pcs.</td>
<td>15</td>
<td>2.00</td>
<td>30.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>18/08/2017</td>
<td>Pug Cutting Machine</td>
<td>Nos.</td>
<td>3</td>
<td>1460.00</td>
<td>4380.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>19/07/2017</td>
<td>Pug Cutting Machine</td>
<td>Nos.</td>
<td>3</td>
<td>1460.00</td>
<td>4380.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>09/06/2017</td>
<td>Marble Cutting Blade</td>
<td>Sets</td>
<td>3</td>
<td>33.00</td>
<td>99.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>29/04/2017</td>
<td>Flashback Arrester</td>
<td>Sets</td>
<td>3</td>
<td>33.00</td>
<td>99.00</td>
<td>1</td>
<td>=match(PugCut,J2,C2,C12,0)</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The table shows various items with their corresponding dates, quantities, unit rates, and amounts. The formulas in column L are designed to match specific criteria based on the item description.
Example: HIV clinic cohort (Excel)

From here, you can make comparisons and start to ask questions of the data.
<table>
<thead>
<tr>
<th>Subject</th>
<th>age</th>
<th>sex</th>
<th>wt kg</th>
<th>bmi</th>
<th>wbc</th>
<th>hct</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK-1</td>
<td>22</td>
<td>1</td>
<td>60</td>
<td>18</td>
<td>5</td>
<td>35.2</td>
</tr>
<tr>
<td>MB-2</td>
<td>34</td>
<td>0</td>
<td>55</td>
<td>20</td>
<td>6.7</td>
<td>30.8</td>
</tr>
<tr>
<td>RG-3</td>
<td>51</td>
<td>1</td>
<td>74</td>
<td>24</td>
<td>6.4</td>
<td>37.3</td>
</tr>
<tr>
<td>Qi-4</td>
<td>46</td>
<td>1</td>
<td>68</td>
<td>22</td>
<td>4.8</td>
<td>36.1</td>
</tr>
<tr>
<td>SH-6</td>
<td>18</td>
<td>0</td>
<td>48</td>
<td>14</td>
<td>2.6</td>
<td>25.4</td>
</tr>
<tr>
<td>WG-7</td>
<td>29</td>
<td>1</td>
<td>63</td>
<td>21</td>
<td>8.5</td>
<td>30.6</td>
</tr>
<tr>
<td>NO-8</td>
<td>31</td>
<td>0</td>
<td>50</td>
<td>18</td>
<td>3.8</td>
<td>29.6</td>
</tr>
</tbody>
</table>

BMI (X) vs hct (Y)
BMI (X) vs hct (Y)
Google Slides and MS PowerPoint
Google *Slides* (and MS *PowerPoint*) are good for...

- Giving presentations to an audience (Grand Rounds, research symposia, regional/international meetings)
- Presents data *visually* (photos, movies, charts, graphics) in addition to *verbally* (text)
- Google *Docs* and MS *Word* are the reverse (they emphasize text)
SCREENING MAMMOGRAPHY IN WOMEN AGE 40-50 WITH 99% SENSITIVITY & SPECIFICITY

- 21.5 million women (215 thousand false positives)
- 36,000 cases invasive breast cancer (360 false negatives)
- Total positive mammograms: 251,000 (215K + 36K)
- Positive predictive value: 36,000 / 251,000
- Equals 14 percent
Filesharing and the Cloud
The Cloud

Your PC (or laptop) files “sit” on the hard drive, either inside or outside the computer

Your information “sits” on a computer server somewhere else, accessible by internet
Password protected (sometimes)
The cloud lets you save lots of data, *and* it lets you share.

Your PC (or laptop) files go to the cloud.

Second user accesses file on their computers and edits it.

Saved in the Cloud for further revisions.
How much data do you need?

Word & Excel files are small (10-200 KB)
Pictures & graphics are small-medium (100 KB – 2MB)
PowerPoint files are medium (1-100 MB)
Audio/Video is large (10 MB – GBs depending on length)

Currently *all* of my stored files total...

**34 GB** (or 3.4% of my total, as I have **1 TB** avail!)
What’s free, what costs

Dropbox: 2 GB free; 1 TB $10/mo
Google Docs: 15 GB free
Microsoft OneDrive: 5 GB free
Microsoft Office 365 Personal (uses OneDrive): 1 TB $6/mo

1 TB = 1000 GB
Google Drive
([https://drive.google.com/drive/u/0](https://drive.google.com/drive/u/0))

Easy group editing and in live time
Simple visuals
Best use is with *Docs, Files, and Slides*
If you have gmail account, can be easily linked
Compatible with Android phones, not iPhones
OneDrive
(https://onedrive.live.com)
Comes with Microsoft Office subscription
Uses *Word, Excel, & PowerPoint*
More versatile
Also compatible with phones (can’t upload docs to iPhones)
Dropbox (https://dropbox.com) does not have “stand alone” apps. Can also be used with phones, both Android and iPhone.
Links

How to use Google Docs: https://www.youtube.com/watch?v=OBh8bMC7XEU
How to use OneDrive: https://www.youtube.com/watch?v=wINl89ab-g4
Dropbox intro: https://www.youtube.com/watch?v=zjSFC6pPkyk

Review of main features of filesharing apps:
https://www.cloudwards.net/dropbox-vs-google-drive-vs-onedrive/

How to use Google Docs with Microsoft files:
https://www.controlaltachieve.com/2018/03/office-drive.html