Dependence on a retinophilin/myosin complex for stability of PKC and INAD and termination of phototransduction

Kartik Venkatachalam
The Johns Hopkins University School of Medicine

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/neurobiology_pp

Part of the Neuroscience and Neurobiology Commons

Repository Citation

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Neurobiology Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Dependence on a Retinophilin/Myosin Complex for Stability of PKC and INAD and Termination of Phototransduction

Kartik Venkatachalam,1* David Wasserman,1* Xiaoyue Wang,1 Ruoxia Li,1 Eric Mills,1 Rebecca Elsaesser,1 Hong-Sheng Li,1 and Craig Montell1*
1Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and 2Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605

Normal termination of signaling is essential to reset signaling cascades, especially those such as phototransduction that are turned on and off with great rapidity. Genetic approaches in Drosophila led to the identification of several proteins required for termination, including protein kinase C (PKC), NINAC (neither inactivation nor afterpotential C) p174, which consists of fused protein kinase and myosin domains, and a PDZ (postsynaptic density-95/Discs Large/zona occludens-1) scaffold protein, INAD (inactivation no afterpotential D). Here, we describe a mutation affecting a poorly characterized but evolutionarily conserved protein, Retinophilin (Retin), which is expressed primarily in the phototransducing compartment of photoreceptor cells, the rhabdomeres. Retin and INAD formed a complex and were mutually dependent on each other for expression. Loss of retin resulted in an age-dependent impairment in termination of phototransduction. Mutations that affect termination of the photoresponse typically lead to a reduction in levels of the major rhodopsin (Rh1) to attenuate signaling. Consistent with the slower termination in retin1, the mutant photoreceptor cells exhibited increased endocytosis of Rh1 and a decline in Rh1 protein. The slower termination in retin1 was a consequence of a cascade of defects, which began with the reduction in INAD p174 levels. The diminished p174 concentration caused a decrease in INAD. Because PKC requires interaction with INAD for protein stability, this leads to reduction in PKC levels. The decline in PKC was age dependent and paralleled the onset of the termination phenotype in retin1 mutant flies. We conclude that the slower termination of the photoresponse in retin1 resulted from a requirement for the Retin/NINAC complex for stability of INAD and PKC.

Introduction

Drosophila visual transduction is a genetically tractable model to identify and characterize the roles of proteins involved in sensory signaling (Wang and Montell, 2007). As is the case in mammalian rods and cones, phototransduction in fly photoreceptor cells is initiated by rhodopsin, which engages a heterotrimERIC G-protein. In flies, the effector for the G-protein is a phospholipase C (PLC), and the cascade culminates with opening of the TRP (Transient Receptor Potential) and TRP-like cation channels. This contrasts with rod and cone phototransduction, which concludes with closure of cGMP-gated channels (Fu and Yau, 2007). However, a third class of mammalian photoreceptor cells with non-image-forming functions, the intrinsically sensitive retinal ganglion cells, may function through a cascade akin to fly phototransduction (Hankins et al., 2008).

Several crucial signaling proteins emerged from genetic studies of Drosophila phototransduction. These include the Drosophila TRP channel, which is essential for activation (Montell and Rubin, 1989; Hardie and Minke, 1992). Another example is NINAC (neither inactivation nor afterpotential C), which consists of linked protein kinase and myosin domains (Montell and Rubin, 1988). NINAC is expressed as two proteins, p132 and p174. The p132 isoform is spatially restricted to cell bodies, whereas p174 is detected exclusively in the microvillar portion of the photoreceptor cells, the rhabdomeres (Porter et al., 1992), which is the phototransducing compartment (Wang and Montell, 2007). Mammalian proteins comprising fused protein kinase and myosin domains (myosin III) are expressed in photoreceptor cells and in the inner ear, and mutations in human myosin III underlie one type of non-syndromic hearing loss (Döse and Burnside, 2000; Walsh et al., 2002). NINAC binds to calmodulin (Porter et al., 1993, 1995), and disruption of NINAC p174 but not p132 impairs rapid termination and causes an age-dependent electrophysiological phenotype that suggests that there is a decline in rhodopsin concentration (Porter et al., 1992). Moreover, NINAC p174 has been suggested to accelerate the binding of arrestin to light-activated rhodopsin, through a Ca2+/calmodulin-dependent mechanism (Liu et al., 2008).

Rapid termination of phototransduction is essential to reset the photoreceptor cells so they can respond appropriately to subsequent light stimulation. In addition to NINAC p174, other proteins required for normal termination include arrestin (Dolph et al.,

Received May 27, 2010; accepted July 5, 2010.

This work was supported by National Eye Institute Grant EY08117 (C.M.). We thank the Bloomington Stock Center and the Vienna Drosophila RNAi Center for fly stocks, FlyBase (http://flybase.org/) for essential gene data, Michael Delannoy for preparing EM sections and assistance with EM imaging, Ying Jin, Erin Black, and Daria Nikolaeva for technical assistance, the McSporran Facility at the Cell Biology Department of The Johns Hopkins University School of Medicine for the use of equipment, and Dr. Jeffrey Corden for use of the LICOR Odyssey infrared imaging system. The authors declare no conflict of interest.

*K.V. and D.W. contributed equally to this work.

Correspondence should be addressed to Craig Montell, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205. E-mail: cmontell@jhmi.edu.

DOI:10.1523/JNEUROSCI.2709-10.2010
Copyright © 2010 the authors
1993), calmodulin (Porter et al., 1993; Scott et al., 1997), an eye-enriched protein kinase C (PKC) (Smith et al., 1991), RDGC (retinal degeneration C, isoform D) (Vinós et al., 1997; Lee and Montell, 2001), PLC (Bloomquist et al., 1988), which also acts as a GTPase activating protein (Cook et al., 2000; T. Wang et al., 2008), and the PDZ (postsynaptic density-95/Discs Large/zona occludens-1)-containing scaffold protein INAD (inactivation no afterpotential D) (Pak, 1979; Shieh and Niemeyer, 1995; Popescu et al., 2006). INAD binds to multiple proteins required for the photoresponse, several of which, including TRP, PLC, and PKC, depend on interactions with INAD for stable expression in the rhabdomeres (Huber et al., 1996; Chevesich et al., 1997; Tsunoda et al., 1997; Xu et al., 1998). The concentrations of other INAD binding proteins, such as NINAC p174, are not affected by associations with this scaffold protein (Wes et al., 1999).

Here, we used ends-out homologous recombination to knock-out a gene, retinophilin (retin; also referred to as undertaker) (Mecklenburg, 2007; Cuttell et al., 2008), which was expressed predominantly in the eye. The retin gene encodes a poorly characterized protein conserved from flies to humans. We found that retin mutant flies displayed age-dependent impairment in termination of the photoresponse. The appearance of this phenotype coincided with an age-dependent decrease in the concentration of PKC because of a series of defects in the retin mutant. Specifically, we found that Retin formed a complex with NINAC p174, and loss of Retin caused instability of 174, which in turn resulted in a decrease in the concentration of INAD. Because PKC requires interaction with INAD for stability, the level of PKC fell in retin mutant flies. Thus, the Retin/NINAC complex was required for stability of INAD and PKC and normal termination of the photoresponse.

Materials and Methods

Fly stocks. Upstream activating sequence (UAS)–retin–RNA interference (RNAi) was obtained from Vienna Drosophila RNAi center, and Df(3R)ED5147 was from the Bloomington Stock Center. Other fly lines were described previously.

Generation of retin1. We used ends-out homologous recombination (Gong and Golic, 2003) to create a mutation in retin (National Center for Biotechnology Information accession number NM_141263.2; also referred to as undertaker) (Cuttell et al., 2008). One fragment (~3000 to ~2) was inserted between the NotI and SphI sites of pw35. A second fragment (3000 nucleotides 3' to the nucleotide at position +89) was inserted into the BamHI site. Male transformant flies containing the transgene on the second chromosome were mated to female w1118; w; P[w07FLP]1 P[w07-Sce]1; 2B nac^{+/Δ}CyO flies. Progeny were heat shocked (37°C) for 1 h, and ~10 d later females were crossed to w¹¹¹⁸ males. Flies with w⁺ transgenes that moved to the third chromosome were screened by PCR to identify targeting in the retin gene. Knock-out of Retin was confirmed by Western blotting.

Generation of Retin antibodies. A retin cDNA (encoding residues 3–198) was subcloned into pGEX5X-1 (GE Healthcare). The glutathione S-transferase fusion protein was expressed in Escherichia coli BL21 codon-plus (Strategene), purified using glutathione agarose beads (GE Healthcare), and injected into rabbits (Covance).

Immunolocalizations. Fly heads were hemisected, fixed in paraformaldehyde, and embedded in LR White resin as described previously (Porter and Montell, 1993). Cross-sections (0.5 μm) were blocked using 5% goat serum in PBS for 1 h, incubated for 1 h with primary antibodies (rabbit anti-Retin at 1:1000 or mouse anti-Rh1 at 1:1000), diluted in blocking buffer, washed with PBS, and incubated for 1 h with Alexa Fluor 488-labeled goat anti-mouse and/or Alexa Fluor 568-labeled goat anti-rabbit (Invitrogen) diluted at 1:500 in blocking buffer. Cross-sections were
washed with PBS and mounted with Vectashield (Vector Laboratories). All incubations were done at room temperature. Images were acquired using a Carl Zeiss 510 Meta Confocal Microscope.

Western blots. Fly heads were homogenized in SDS-sample buffer, and proteins were fractionated by SDS-PAGE and transferred to Hybond-C Extra Nitrocellulose membranes (GE Healthcare) in Tris-glycine buffer. The blots were probed with mouse anti-tubulin (1:1000 dilution; Developmental Studies Hybridoma Bank), rabbit anti-Retin (1:1000 dilution), rabbit anti-Rh1 (1:1000; gift from D. Ready, Purdue University, West Lafayette, IN), rabbit anti-NINAC (αZBS51) (1:1000 dilution) (Montell and Rubin, 1988), rabbit anti-NORPA (no receptor potential A) (PLC) antibodies (1:1000 dilution) (Wang et al., 2005), rabbit anti-arrestin 2 (Arr2) antibodies (1:500 dilution; S. J. Lee and C. Montell, unpublished data), rabbit anti-PKC antibodies (1:1000 dilution) (Li and Montell, 1992), rabbit anti-NORPA (PLC) antibodies (1:1000 dilution) (Wang et al., 2005), rabbit anti-arrestin 2 (Arr2) antibodies (1:500 dilution; S. J. Lee and C. Montell, unpublished data), rabbit anti-PKC antibodies (1:1000 dilution) (Li and Montell, 1992), rabbit anti-NORPA (PLC) antibodies (1:1000 dilution) (Wang et al., 2005). The blots were probed with IRDye 680 donkey anti-rabbit IgG (LI-COR) or IRDye 800 donkey anti-mouse IgG (LI-COR) and detected with the Odyssey infrared imaging system (LI-COR).

Electroretinogram recordings. To perform electroretinograms (ERGs), we filled two glass microelectrodes with Ringer’s solution, which we inserted into drops of electrode cream placed on the surfaces of the compound eye and the thorax. We stimulated the eyes using a Newport light projector (model 765), and the ERG signals were amplified with a Warner Instruments electrometer IE-210. We recorded the waveforms with a Powerlab 4/30 analog-to-digital converter (AD Instruments). We measured prolonged depolarization afterpotential (PDAs) using five pulses of orange (580) or blue (480) light in the following order: orange, blue, blue, orange, orange (5 s pulse separated by 7 s intervals). All recordings were conducted at room temperature.

Transmission electron microscopy. Heads were dissected from flies reared under a light/dark cycle or in constant darkness, fixed in glutaraldehyde, and embedded in LR White resin as described previously (Porter et al., 1992). Sections (85 nm) prepared at a depth of 30 μm were examined by transmission EM using a Carl Zeiss FEI Tecnai 12 electron microscope. The images were acquired using a Gatan camera (model 794) and Gatan Digital Micrograph software and converted into tiff files.

Optical neutralization technique. To assay the numbers of rhabdomeres/ommatidium, we used the optical neutralization technique (Franceschini et al., 1981). Each data point was based on ≥50 ommatidia per fly (n ≥ 3 flies).

Coimmunoprecipitations. Approximately 15 mg of fly heads were homogenized at 4°C in PBS, pH 7.4, containing 1% Triton X-100, 1 mM DTT, and 1X protease inhibitor cocktail (Sigma). The homogenates were centrifuged at 16,000 × g for 30 min at 4°C. Supernatants were incubated with primary antibodies for 2 h at 4°C. Protein A Sepharose beads were blocked in homogenization buffer plus 1% BSA for 30 min at 4°C. Blocked beads (50 μl) were added to the tubes containing the immune complexes and incubated for 1 h at 4°C. Beads plus immune complexes were pelleted by low-speed (3500 × g) centrifugation at 4°C and washed three times with homogenization buffer. Immune complexes were eluted with 2X SDS sample buffer, and proteins were detected by Western blotting.

Results

Generation of the retin¹ mutant

Most genes known to function in phototransduction are expressed predominantly in the eye (Wang and Montell, 2007). Therefore, to identify new candidate genes required for *Drosophila* phototransduction, we previously conducted a genome-wide screen for genes expressed predominantly in the eye (Xu et al., 2004). A gene referred to as *retinophilin* (*retin*) (Mecklenburg, 2007) was among the most eye-enriched genes (146.7-fold) that have not been subjected to functional analysis (Xu et al., 2004). The *retin* gene (83A1 on the third chromosome) encodes a 198 aa protein with four tandem 23–24 aa MORN (membrane occupation and recognition nexus) domains, originally identified in a group of proteins referred to as junctophilins (Takeshima et al., 2000). *Retin* is not a junctophilin because it is much smaller than these ~600–1000 aa proteins, lacks the typical C-terminal transmembrane domain, and does not share sequence homology with junctophilins outside of the MORN domains. Rather, *Drosophila*
Retin is a member of a distinct group of poorly characterized proteins that is conserved from flies to humans. Human Retin shares ~50% identity with the fly Retin over a 140 aa region that includes the four MORN domains and most of the C terminus.

To characterize the role of retin in photoreceptor cells, we generated the retin1 mutation by homologous recombination (Fig. 1A). The deletion removed the initiation codon and the following two methionine codons. The next methionine in the sequence does not occur until residue 132. Evidence that the deletion was targeted to the retin locus was that the predicted 3.1 kb PCR product was produced in retin1 but not wild-type flies, using primers corresponding to the white marker gene and a genomic region outside of the targeting construct (Fig. 1A, B).

Retin was detected exclusively in the rhabdomeres
To define the subcellular distribution of Retin, we raised antibodies to the Retin protein. The antibodies appeared to recognize Retin because it stained a protein near the predicted molecular weight of 22.7 kDa in wild type (Fig. 1D). This protein was absent in retin1 or in flies containing the retin1 mutation in trans with a deficiency chromosome (Df) that contains a large deletion covering several genes, including retin (Fig. 1D). Because the Retin protein was absent in retin1 and retin1/Df, we concluded that retin1 is a null mutation.

The Drosophila compound eye consists of ~800 ommatidia, each of which includes eight photoreceptor cells, although only seven are present in any cross-sectional plane. Each photoreceptor cell includes a rhabdomere, which is the functional equivalent of rod and cone outer segments. The major rhodopsin, Rh1, which is expressed in the six outer photoreceptor cells (R1–R6), is a marker for rhabdomere-specific staining. We found that the Retin antibodies stained wild-type rhabdomeres exclusively, because it colocalized with Rh1 in the R1–R6 cells but did not label the extra-rhabdomeral cell bodies or the rhabdomeres of retin1 flies (Fig. 1C).

Requirement for retin for termination of the photoresponse
To determine whether the retin1 mutation affected the light response, we performed ERGs, which are extracellular recordings that assay the summed responses of all retinal cells to light. We dark-adapted the flies for 10 min and then exposed them to a 5 s pulse of light. Wild-type and retin1 flies (9 d old) displayed corneal negative receptor potentials of similar amplitudes (Fig. 1E). After cessation of the light stimulus, the response termination was increased significantly in the retin1 flies (Fig. 1E, F) (t(80); wild-type, 2.7 ± 0.3 s; retin1, 4.8 ± 0.3 s; ANOVA, p < 0.05, n = 3). To obtain an independent fly line with diminished expression of retin, we expressed a UAS–retin–RNAi transgene in photoreceptor cells under the control of the photoreceptor cell-enriched glass multiple reporter-GAL4 (GMR–GAL4). The retin–RNAi was effective, because we did not detect the protein in these transgenic flies (Fig. 1D). Termination was similarly slowed in retin–RNAi flies and in retin1/Df (Fig. 1F) (t(80); retin–RNAi, 5.1 ± 0.4 s; retin1/Df, 4.5 ± 0.3 s; ANOVA, p < 0.05, n ≥ 3). These data support the conclusion that the termination defect was not attributable to a background mutation.

Loss of Rh1 in retin1 flies
During Drosophila phototransduction, an increase in the response termination time leads to elevated endocytosis and degradation of Rh1, which serves as a negative feedback mechanism (Han et al., 2007). Consequently, a decline in Rh1 can provide a sensitive biochemical readout for the onset of a defect in termination. Therefore, we evaluated whether the concentration of Rh1 was decreased in retin1. We found that the level of Rh1 was reduced in 7-d-old retin1, as well as in retin1/Df and retin1–RNAi flies (Fig. 2A, B) (ANOVA, p < 0.05, n ≥ 3). This decrease in Rh1 levels correlated with a significant increase in endocytic Rh1 particles (ERPs) in the cell bodies of the retin1 photoreceptor cells (Fig. 2C, D) (unpaired Student’s t test, p < 0.05, n ≥ 3).

We used an additional ERG paradigm to assess whether Rh1 was functionally reduced in retin1 flies. In white-eyed flies, transient exposure to blue light results in continuous activation of Rh1. Cessation of this PDA requires exposure to orange light (Fig. 2). After cessation of the light stimulus, the response termination time leads to elevated endocytosis and degradation of Rh1, which serves as a negative feedback mechanism (Han et al., 2007). Consequently, a decline in Rh1 can provide a sensitive biochemical readout for the onset of a defect in termination. Therefore, we evaluated whether the concentration of Rh1 was decreased in retin1. We found that the level of Rh1 was reduced in 7-d-old retin1, as well as in retin1/Df and retin1–RNAi flies (Fig. 2A, B) (ANOVA, p < 0.05, n ≥ 3). This decrease in Rh1 levels correlated with a significant increase in endocytic Rh1 particles (ERPs) in the cell bodies of the retin1 photoreceptor cells (Fig. 2C, D) (unpaired Student’s t test, p < 0.05, n ≥ 3).

We used an additional ERG paradigm to assess whether Rh1 was functionally reduced in retin1 flies. In white-eyed flies, transient exposure to blue light results in continuous activation of Rh1. Cessation of this PDA requires exposure to orange light (Fig. 2). After cessation of the light stimulus, the response termination time leads to elevated endocytosis and degradation of Rh1, which serves as a negative feedback mechanism (Han et al., 2007). Consequently, a decline in Rh1 can provide a sensitive biochemical readout for the onset of a defect in termination. Therefore, we evaluated whether the concentration of Rh1 was decreased in retin1. We found that the level of Rh1 was reduced in 7-d-old retin1, as well as in retin1/Df and retin1–RNAi flies (Fig. 2A, B) (ANOVA, p < 0.05, n ≥ 3). This decrease in Rh1 levels correlated with a significant increase in endocytic Rh1 particles (ERPs) in the cell bodies of the retin1 photoreceptor cells (Fig. 2C, D) (unpaired Student’s t test, p < 0.05, n ≥ 3).

We used an additional ERG paradigm to assess whether Rh1 was functionally reduced in retin1 flies. In white-eyed flies, transient exposure to blue light results in continuous activation of Rh1. Cessation of this PDA requires exposure to orange light (Fig. 2). After cessation of the light stimulus, the response termination time leads to elevated endocytosis and degradation of Rh1, which serves as a negative feedback mechanism (Han et al., 2007). Consequently, a decline in Rh1 can provide a sensitive biochemical readout for the onset of a defect in termination. Therefore, we evaluated whether the concentration of Rh1 was decreased in retin1. We found that the level of Rh1 was reduced in 7-d-old retin1, as well as in retin1/Df and retin1–RNAi flies (Fig. 2A, B) (ANOVA, p < 0.05, n ≥ 3). This decrease in Rh1 levels correlated with a significant increase in endocytic Rh1 particles (ERPs) in the cell bodies of the retin1 photoreceptor cells (Fig. 2C, D) (unpaired Student’s t test, p < 0.05, n ≥ 3).

We used an additional ERG paradigm to assess whether Rh1 was functionally reduced in retin1 flies. In white-eyed flies, transient exposure to blue light results in continuous activation of Rh1. Cessation of this PDA requires exposure to orange light (Fig. 2). After cessation of the light stimulus, the response termination time leads to elevated endocytosis and degradation of Rh1, which serves as a negative feedback mechanism (Han et al., 2007). Consequently, a decline in Rh1 can provide a sensitive biochemical readout for the onset of a defect in termination. Therefore, we evaluated whether the concentration of Rh1 was decreased in retin1. We found that the level of Rh1 was reduced in 7-d-old retin1, as well as in retin1/Df and retin1–RNAi flies (Fig. 2A, B) (ANOVA, p < 0.05, n ≥ 3). This decrease in Rh1 levels correlated with a significant increase in endocytic Rh1 particles (ERPs) in the cell bodies of the retin1 photoreceptor cells (Fig. 2C, D) (unpaired Student’s t test, p < 0.05, n ≥ 3).

We used an additional ERG paradigm to assess whether Rh1 was functionally reduced in retin1 flies. In white-eyed flies, transient exposure to blue light results in continuous activation of Rh1. Cessation of this PDA requires exposure to orange light (Fig. 2). After cessation of the light stimulus, the response termination time leads to elevated endocytosis and degradation of Rh1, which serves as a negative feedback mechanism (Han et al., 2007). Consequently, a decline in Rh1 can provide a sensitive biochemical readout for the onset of a defect in termination. Therefore, we evaluated whether the concentration of Rh1 was decreased in retin1. We found that the level of Rh1 was reduced in 7-d-old retin1, as well as in retin1/Df and retin1–RNAi flies (Fig. 2A, B) (ANOVA, p < 0.05, n ≥ 3). This decrease in Rh1 levels correlated with a significant increase in endocytic Rh1 particles (ERPs) in the cell bodies of the retin1 photoreceptor cells (Fig. 2C, D) (unpaired Student’s t test, p < 0.05, n ≥ 3).
there was a minor improvement (Fig. 3E). Thus, the decrease in rhabdomere size was not strictly light dependent.

In further support of the correlation between the decline in Rh1 and the onset of slower termination, we found that the concentration of Rh1 in 1- and 3-d-old retin1 flies, which display normal termination (supplemental Fig. 1A), A Western blots using head extracts from 7-d-old flies. Tub, Tubulin; CaM, calmodulin. B, Quantification of the relative protein levels from the Western blots. C, Western blots showing the levels of NINAC and PKC in head extracts from 7-d-old flies. D, Quantification of the relative p174 levels from the Western blots. E, Quantification of the relative PKC levels from the Western blots. F, Quantification of the 80% deactivation times of the light response from 3-d-old flies. G, Quantification of the relative p174 levels from the Western blots from flies of the indicated ages. H, Quantification of the relative PKC levels from the Western blots from flies of the indicated ages. Error bars indicate ±SEM. ∗p < 0.05, ANOVA, n ≥ 3.

Delay in termination corresponds to an age-dependent decrease in PKC
To address whether the delay in termination in retin1 flies arose as a result of a decrease in p174 or PKC, we examined the time course of loss of p174 and PKC. Although termination was normal in 3-d-old retin1 flies (Fig. 4F) (supplemental Fig. 1A, available at www.jneurosci.org as supplemental material), the concentration of p174 was already lower in 3-d-old retin1 flies than in wild type (Fig. 4H) (Student’s t test, p < 0.05, n ≥ 3). Thus, the decline in p174 did not parallel the onset of the termination phenotype. In contrast, the levels of PKC in 1- and 3-d-old retin1 flies were similar to those in wild type (Fig. 4H) (supplemental Fig. 2C, available at www.jneurosci.org as supplemental material) (n ≥ 3). In 7-d-old retin1, the level of PKC were significantly lower than in wild type (Fig. 4H) (Student’s t test, p < 0.05, n = 3). Therefore, the onset of the decrease in PKC coincided with the time course of the delay in response termination and the decline in Rh1 levels. Consistent with the conclusion that a twofold reduction in PKC underlay the delay in termination in retin1, a similar termination phenotype occurred in inacC209/+ (pkc+/+) heterozygous flies (N. Wang et al., 2008). As observed in retin1 ommatidia, all the photoreceptor cells were still present in 21-d-old retin1 heads, when the concentration of Rh1 and the PDA had already declined. There were no significant differences in the amounts of PLC, Arr2, calmodulin, or RDGC relative to wild type (Fig. 4A,B).

Protein levels of NINAC and PKC depend on Retin
Proteins required for rapid termination of the photoreceptor include Arr2 (Dolph et al., 1993), the NINAC p174 isoform (Montell and Rubin, 1988; Porter et al., 1992), PKC (encoded by inacC) (Smith et al., 1991), calmodulin (Porter et al., 1993, 1995; Scott et al., 1997), rhodopsin phosphatase (RDGC) (Vinós et al., 1997), and PLC (NORPA) (Bloomquist et al., 1988; Cook et al., 2000; T. Wang et al., 2008). Therefore, we tested whether the levels of any of these proteins were reduced in 7-d-old retin1 heads, when the concentration of Rh1 and the PDA had already declined. There were no significant differences in the amounts of PLC, Arr2, calmodulin, or RDGC relative to wild type (Fig. 4A,B). In contrast, the levels of NINAC p174 and PKC were reduced significantly in retin1, retin1/Df, and retin1–RNAi flies (Fig. 4C–E) (ANOVA, p < 0.05, n ≥ 3). However, the concentration of the non-rhabdomeral NINAC isoform, p132, remained unchanged (Fig. 4C) (supplemental Fig. 2A, available at www.jneurosci.org as supplemental material).
old inaCp235/+ flies (supplemental Fig. 2D,E, available at www.jneurosci.org as supplemental material).

Retin and NINAC p174 form a complex

Because the protein concentrations of p174 and PKC decreased in the retin1 flies, we tested whether either of the two proteins formed a complex with Retin in vivo. Therefore, we immuno precipitated Retin from fly heads and probed a Western blot with antibodies that recognized PKC as well as both forms of NINAC. We found that p174 coimmunoprecipitated with Retin (Fig. 5A). Neither NINAC isoform immunoprecipitated from homogenates prepared from retin1, retin1/Df, or retin–RNAi heads (supplemental Fig. 3B, available at www.jneurosci.org as supplemental material). In a reciprocal experiment, using anti-p174, Retin coimmunoprecipitated with p174 (Fig. 5B). In contrast, Retin did not coimmunoprecipitate with NINAC p132 (Fig. 5B) or PKC (supplemental Fig. 3A), available at www.jneurosci.org as supplemental material).

Retin was undetectable in inaCp174

Because Retin interacted with p174 and was required for its stability, we addressed whether there was a reciprocal requirement for p174 for expression of Retin. We found that Retin was absent in 7-d-old flies lacking the two NINAC proteins (inaCp235) or p174 only (inaCp174) (Fig. 5C). Furthermore, we did not detect the Retin protein in inaCp174 flies that were 1 d old or even in flies that were only 30 min after eclosion (Fig. 5D). Loss of p132 had no impact on the levels of Retin (inaCp132) (Fig. 5E). Thus, expression of Retin was strictly dependent on p174.

The reduction in PKC in retin-deficient flies raised the possibility that PKC levels were also reduced in the inaC mutant. Consistent with the absence of Retin in inaCp174 flies, the concentration of PKC was also diminished in 7-d-old inaC mutant animals (Fig. 5F,G). As expected, because inaC flies did not display a PDA (Montell and Rubin, 1988), Rh1 levels were also reduced in inaCp174 flies (Fig. 5F,G). Thus, NINAC p174 was required for expression of Retin, rhodopsin, and PKC. Similar to what we found in retin1 photoreceptor cells, the reduction of Rh1 and PKC in inaCp174 flies was age dependent, because the levels of Rh1 and PKC in 1-d-old inaCp174 were indistinguishable from wild type (supplemental Fig. 4A,B, available at www.jneurosci.org as supplemental material).

Loss a PKC in retin1 was attributable to a requirement for NINAC for stability of INAD

The finding that the concentration of PKC undergoes an age-dependent decline in retin1 raises the question as to the molecular basis for this impairment. NINAC p174 forms a complex with Retin and is dependent on this interaction for protein stability. NINAC p174 also binds the PDZ domain containing protein INAD (Wes et al., 1999), and PKC depends on binding to this scaffold protein for stability (Tsunoda et al., 1997). Therefore, we tested whether the level of PKC might decline in retin1 because of a requirement for NINAC p174 for maintaining normal levels of INAD.

We found that expression of the INAD protein decreased in retin1, and this was attributable to a requirement for NINAC p174 for stability of INAD. In 7-d-old flies lacking Retin, there was an ∼50% reduction in the levels of INAD (Fig. 6A,B) (ANOVA, p < 0.05, n ≥ 3). This dependence of INAD on Retin was not reciprocal because the amount of Retin in inaD null flies (inaD0)
(Tsunoda et al., 1997; Wes et al., 1999) was not significantly different from wild type (Fig. 6C, D) (Student’s t test, n ≥ 3).

We found that *ninaC*Δ174 flies showed a significant decrease in INAD (Fig. 6E, F) (Student’s t test, n ≥ 3). As was the case for PKC, the reductions in the concentration of INAD in the *retin*1 and *ninaC*Δ174 flies were age dependent, because the levels of INAD in 7-d-old mutant flies were either unchanged or reduced to a smaller extent than in 7-d-old *retin*1 and *ninaC*Δ174 (Fig. 6G) (ANOVA, p > 0.05, n ≥ 3).

Because both NINAC and Retin mutually affect the concentration of the other protein, we could not distinguish whether the reductions of INAD in *retin*1 or *ninaC*Δ174 flies were attributable to a requirement for one or the other protein. Therefore, we examined the protein level of INAD in flies that expressed an NINAC variant with a single amino acid change of the C-terminal residue (ninaC^{1501E}), which prevented binding to INAD (Wes et al., 1999). The ninaC^{1501E} flies expressed wild-type amounts of NINAC and Retin (Fig. 6H). In contrast, the concentrations of INAD and PKC were reduced ~50% in ninaC^{1501E} flies (Fig. 6I, J). These decreases of INAD and PKC in the ninaC^{1501E} flies were also age dependent because the levels of INAD and PKC in 1-d-old ninaC^{1501E} flies were indistinguishable from the wild-type levels.
type value (Fig. 6K,L) (ANOVA, $p > 0.05$, $n \approx 3$). Although the
inadD null mutation caused instability of TRP, PLC, and PKC, the
twofold reduction in INAD in retin1 (Fig. 6D) did not result in a
significant decline in PLC or TRP (Fig. 4A) (supplemental Fig.
5A,B, available at www.jneurosci.org as supplemental material).
Thus, the stabilities of PLC and TRP were less sensitive to the
concentration of INAD. Nevertheless, our results indicate that
the decrease in INAD results from loss of the NINAC/INAD in-
teraction rather than nonspecific effects on the concentration of
either Retin or NINAC, because the both Retin and NINAC p174
were expressed at normal levels in inad11301E flies.

Discussion

In this study, we describe the identification of Retin, a protein
required for termination of the photoreponse. Unlike other pro-
teins that function in termination, the retin phenotype was age
dependent. Slow termination leads to increased endocytosis and
degradation of the major rhodopsin, Rh1, which serves as a neg-
ative feedback mechanism to attenuate the visual response (Han
et al., 2007). Consistent with a defect in termination, the age-
dependent impairment in the photoreponse in retin1 was asso-
ciated with greater endocytosis of Rh1 and an age-dependent
reduction in the concentration of Rh1.

A central question concerns the basis for the age-dependent
decrease in the termination rate in retin-deficient flies. Retin has
been reported to function in macrophages through a pathway
that involves the ryanodine receptor, a store-operated channel,
Orai, and the interacting protein STIM1 (Cuttell et al., 2008),
which is present in the endoplasmic reticulum (ER) and senses
changes in ER Ca$^{2+}$. However, Ca$^{2+}$ release from the ER, the
ryanodine receptor, and the IP$_3$ receptor do not appear to func-
tion in Drosophila visual transduction (Acharya et al., 1997;
Raghu et al., 2000; Sullivan et al., 2000). Furthermore, knock-
down of stim1 RNA using a photoreceptor cell GALA in combi-
nation with UAS–stim1–RNAi transgene had no effect on
phototransduction, the concentration of Retin, or other proteins
reduced in retin1 mutant eyes (data not shown). The decrease in
termination in retin1 mutant flies was not directly attributable to
loss of Retin, because the Retin protein was absent in young flies
that exhibited normal termination. The retin phenotype also was
not a consequence of a reduction in NINAC p174, because both
3- and 7-d-old retin1 flies displayed similarly low levels of p174;
however, only the 7-d-old flies exhibited the slow termination
phenotype.

We conclude that the age-dependent termination phenotype in
retin1 results from a reduction in PKC levels. Consistent with
this proposal, the decline in PKC concentration paralleled the
appearance of the termination phenotype. In young retin1 flies,
which displayed normal termination, PKC was not reduced sig-
nificantly from wild type. However, in older retin1 flies, the PKC
concentration declined twofold. In further support of the conclu-
sion that the 50% decrease in PKC is responsible for the termina-
tion defect in retin1, a similar impairment in termination occurs
in heterozygous flies, which are missing a copy of the gene encod-
ing the eye-enriched PKC (N. Wang et al., 2008).

We propose the following mechanism through which Retin
affects the concentration of PKC. First, Retin forms a complex
with NINAC p174, and this interaction is required for the stabil-
ity of p174. Both proteins communoprecipitated from head ex-
tracts, and loss of Retin resulted in a lower concentration of p174.
The requirement for Retin and NINAC was mutual because Retin
was undetectable in flies missing p174. Second, NINAC is re-
quired for stabilizing the PDZ-containing scaffold protein INAD.

NINAC and INAD interact (Wes et al., 1999), and we find that a
single amino acid mutation that disrupts the INAD binding site
in p174 (inad11301E) causes a reduction in INAD. Third, PKC
binds stoichiometrically to INAD and requires this interaction for
stability (Huber et al., 1996; Tsunoda et al., 1997; Xu et al.,
1998). As a result, INAD and PKC displayed indistinguishable
twofold decreases in protein levels. We found that PKC also de-
clined to a similar extent in flies expressing NINAC11301E. Be-
cause INAD was reduced in inad11301E flies, but not Retin or
NINAC p174, the instability of PKC was not attributable to non-
specific effects resulting from changes in the concentrations
either Retin or p174. Thus, loss of Retin causes a reduction in
the level of p174, which in turn affects the concentration of
INAD, leading to instability of PKC, which underlies the slower
termination.

Despite the defect in termination, retin1 flies exhibited only
minor effects on retinal morphology. There are multiple exam-
plifications of mutations that are associated with termination defects
that display relatively minor alterations in rhabdosome morphol-
ogy. These include rct2 (Elsasser et al., 2010), ninaC (Porter et
al., 1992), and stops (T. Wang et al., 2008). Of particular rele-
ance, flies heterozygous for a mutation disrupting the eye-
enriched PKC (inad11301E/+ flies), which exhibit a termination
phenotype similar to retin1 (N. Wang et al., 2008), do not un-
dergo retinal degeneration.

Finally, both Retin and myosins with fused N-terminal pro-
tein kinase domains are found in other organisms, including hu-
mans. Protein kinase/myosins (myosin IIIIs) and Retin are both
expressed in the mammalian retina (Dosé and Burnside, 2000;
Mecklenburg, 2007). This raises the possibility that Retin and
myosins related to NINAC may form a complex in mammalian
photoreceptor cells and are required for signaling.

References

Acharya JK, Jalink K, Hardy RW, Hartenstein V, Zuker CS (1997) InsP$_3$,
receptor essential for growth and differentiation but not for vision in

Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H,
Rubin G, Pak WL. (1988) Isolation of a putative phospholipase C gene of

protein, INAD, for localization of the TRP store-operated channel to a

Cook B, Bar-Yaacov M, Cohen Ben-Ami H, Goldstein RE, Paroush Z,
Selinger Z, Minke B (2000) Phospholipase C and termination of

Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van Goethem E, Eid IP,
Quirin M, Franc NC (2008) Undertaker, a Drosophila Junctophilin,
links Draper-mediated phagocytosis and calcium homeostasis. Cell
135:524–534.

Dolph PJ, Ranganathan R, Colley NJ, Hardy RW, Sooolich M, Zuker CS

Drosophila visual Arrestin2 depends on Rac2. Proc Natl Acad Sci U S A
107:4740–4745.

Franceschini N, Kirshfeld K, Minke B (1981) Fluorescence of photorecep-

Arch 454:805–819.

Gong WJ, Golic KG (2003) Ends-out, or replacement, gene targeting in

Han J, Reddig K, Li HS (2007) Prolonged Gq activity triggers fly rhodopsin
endocytosis and degradation, and reduces photoreceptor sensitivity.
EMBO J 26:4966–4973.

