Introduction to Biostatistics - Lecture 2: Statistical Inference Procedures

Jonggyu Baek

University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer

Part of the Biostatistics Commons, Family Medicine Commons, Infectious Disease Commons, Medical Education Commons, and the Public Health Commons

Repository Citation

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Lecture 2:

• Statistical Inference Procedures
 – Hypothesis test for population average
 – Hypothesis test for comparing means
 – Power and sample size
Statistical Inference

Two broad areas of statistical inference:

• Estimation: Use sample statistics to estimate the unknown population parameter.

 — **Point Estimate:** the best single value to describe the unknown parameter.

 — **Standard Error (SE):** standard deviation of the sample statistic. Indicates how precise is the point estimate.

 — **Confidence Interval (CI):** the range with the most probable values for the unknown parameter with a \((1-\alpha)\% \) level of confidence.

• Hypothesis Testing: Test a specific statement (assumption) about the unknown parameter.
Statistical Inference for population average μ

Estimation: Point Estimate & Standard Error

- Suppose X a variable (e.g., systolic BP, hypertension, # of prior complications) from a population of size N with average μ and standard deviation σ.
- We select a random sample x_1, x_2, \ldots, x_n of size n
- **Point Estimate** of μ: \bar{x}
- **Standard error** of \bar{x}: Standard Deviation of all possible \bar{x}’s
- From the **central limit theorem (CLT)**, for n large ($n \geq 30$):
 \[\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \]
- If σ also unknown we can estimate from the sample standard deviation s.
The Central Limit Theorem (CLT)

Suppose X from a population (N) with \(\mu \) and \(\sigma \).

- If we take random samples (n) with replacement from the population, for large "n" the distribution of the sample mean \(\bar{x} \) is approximately normally distributed with \(\mu_{\bar{x}} = \mu \) and \(\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \), i.e.:

\[
\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})
\]

Importance:

- The distribution of the sample mean (\(\bar{x} \)) is approximately normal even if X does not follow \(N(\mu, \sigma) \).
- Sample mean is very useful for statistical inference.
Normal Distribution

Examples:

1. $N(0,1)$
2. $N(2,1)$
3. $N(0,2)$
4. $N(2,2)$
The Standard Normal Distribution

\(\bar{x} \sim N(\mu, \sigma/\sqrt{n}) \) can be transformed to a \(Z \sim N(0, 1) \):

\[
Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}
\]

- \(N(0, 1) \) is called the standard normal distribution
- \(Z \) is the standardized value of \(\bar{x} \)
- Standardized values make comparable variables that are measured in different units, or have different variability
Statistical Inference for population average μ

Estimation: Confidence Interval

- **Confidence Interval (CI):** a range of values that are likely to cover the true parameter value with a level of confidence $(1-\alpha)\%$ assigned to it. The most common choice for α is 5%.

- Usually CIs are symmetric around the point estimate.

- From the central limit theorem (CLT), for n large ($n \geq 30$):
 \[
 \bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})
 \]

- Hence,
 \[
 Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)
 \]
Statistical Inference for population average \(\mu \):

Estimation: Confidence Interval

- E.g., \((1-\alpha)=95\%\) CI for \(\mu \)

95\% CI for average \(\mu \):

\[
\left[\bar{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} , \, \bar{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}} \right]
\]

How we derived its 95\% CI?

- 95\% of Z around 0 is between -1.96 and 1.96

[or \(Z_{0.025} = -1.96 \) and \(Z_{0.975} = 1.96 \)]

- Remember that Z does not have any scale because it is standardized. We need the scale back to calculate 95\% CI.
Based on the percentiles of the \(N(0,1) \) there are some commonly reported CIs:

<table>
<thead>
<tr>
<th>(1-(\alpha))% CI</th>
<th>(\alpha)</th>
<th>(\alpha/2)</th>
<th>1-(\alpha/2)</th>
<th>(Z_{\alpha/2})</th>
<th>(Z_{1-\alpha/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>20</td>
<td>10</td>
<td>90</td>
<td>-1.28</td>
<td>1.28</td>
</tr>
<tr>
<td>90%</td>
<td>10</td>
<td>5</td>
<td>95</td>
<td>-1.64</td>
<td>1.64</td>
</tr>
<tr>
<td>95%</td>
<td>5</td>
<td>2.5</td>
<td>97.5</td>
<td>-1.96</td>
<td>1.96</td>
</tr>
<tr>
<td>99%</td>
<td>1</td>
<td>0.5</td>
<td>99.5</td>
<td>-2.58</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Example of CIs: The Framingham Heart Study

- Can you calculate 95% CIs based only on descriptive statistics for the systolic blood pressure?

```r
library(psych)
describe(dat1$sysbp)
```

95% CI : $[\bar{x} - 1.96 \cdot \left(\frac{\sigma}{\sqrt{n}}\right), \bar{x} + 1.96 \cdot \left(\frac{\sigma}{\sqrt{n}}\right)]$

= $[136.32 - 1.96 \cdot 0.21, 136.32 + 1.96 \cdot 0.21]$

= $[135.91, 136.73]$
Example of CIs: The Framingham Heart Study

- Is there any way to calculate 95% CI directly?

```r
t.test(dat1$sysbp)

> t.test(dat1$sysbp)

One Sample t-test

data:  dat1$sysbp
t = 644.76, df = 11626, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:
135.9097 136.7386

sample estimates:
mean of x
136.3241
```
Hypothesis Testing for the mean μ

• Suppose X continuous from a population with mean μ and standard deviation σ.

• **What is the value of μ?**

• We select a random sample from that population and try to make inference about μ.
Statistical Inference for population average μ

Key Concepts in Hypothesis Testing

- **Null hypothesis (H_0):**
 - An explicit statement about an unknown parameter the validity of which you wish to test, e.g., $\mu = \mu_0$

- **Alternative hypothesis (H_1):**
 - An alternative statement about the unknown parameter used to compare your null with, e.g.,
 - $\mu \neq \mu_0$ (two-sided test)
 - $\mu < \mu_0$ (one-sided test)
 - $\mu > \mu_0$ (one-sided test)

- **Errors:**
 - Type I: reject H_0 | H_0 is true (crucial)
 - Type II: do not reject H_0 | H_1 is true (moderate)
Statistical Inference for population average μ

Key Concepts in Hypothesis Testing

Think of **Type I** error as the “presumption of innocence” according to which “everyone is presumed innocent until proven guilty”:

“It is better that ten guilty persons escape than that one innocent suffer” from the principle of Blackstone formula:

- H_0: a person is innocent
- H_1: a person is guilty

• Without enough evidences, a person is innocent

What about this?

- H_0: a person is guilty
- H_1: a person is innocent

• Without enough evidences, a person is guilty
Hypothesis Testing for the mean μ

• What is the value of μ? (e.g., the population mean of systolic BP is 136.

• Hypothesis Test:

H_0: $\mu = \mu_0 (=136)$
Hypothesis Testing for the mean μ

• What is the value of μ?

• Hypothesis Test:
 $H_0: \mu = \mu_0 (=136)$

• Random sample:
 \bar{x}
Hypothesis Testing for the mean μ

• What is the value of μ?

• Hypothesis Test:
 $H_0: \mu = \mu_0$ (?)

• Random sample:
 \overline{x}

• If \overline{x} close to $\mu_0 \rightarrow H_0$ probable
• If \overline{x} far from $\mu_0 \rightarrow H_0$ not probable
Hypothesis Testing for the mean μ

- What is the value of μ?

- Hypothesis Test:
 H_0: $\mu = \mu_0$ (?)

- Random sample:
 \bar{X}

- If \bar{X} close to μ_0 \rightarrow H_0 probable
- If \bar{X} far from μ_0 \rightarrow H_0 not probable
Key Concepts in Hypothesis Testing

• **Test Statistic:**

 – A summary measure of your sample, with known distribution under H_0, used for testing the null hypothesis (H_0), e.g.,

 $$Z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \quad H_0 \sim N(0, 1)$$

 Test Statistic

• **Critical points:**

 – Values (percentiles) of the known distribution of the test statistic above or below which the probability of Type I Error is $\alpha\%$, e.g.,

 $$Z_{\alpha}, \quad Z_{\alpha/2}, \quad Z_{1-\alpha/2}, \quad t_{1-\alpha/2, \text{d.f.}}, \quad \text{etc.}$$
Statistical Inference for population average μ

Hypothesis Test

- **Example:** Hypothesis testing about the population mean μ, at $\alpha\%$ level of significance
- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$
- CLT $\rightarrow \bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \implies Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$

- If H_0 is true: $Z_0 = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$
 - Z_0 close to 0 \rightarrow H_0 probably true
 - Z_0 “much” different from 0 \rightarrow H_0 probably NOT true
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$ level of significance

- H_0: $\mu = \mu_0$

- H_1: $\mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$

- CLT $\rightarrow \bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \implies Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

- If H_0 is true: $Z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \overset{H_0}{\sim} N(0, 1)$
 - Z_0 close to 0 $\rightarrow H_0$ probably true
 - Z_0 “much” different from 0 $\rightarrow H_0$ probably NOT true

How “much”?
Statistical Inference for population average μ

Hypothesis Test

- **Example:** Hypothesis testing about the population mean μ, at $\alpha\%$ level of significance

- H_0: $\mu = \mu_0$

- H_1: $\mu \neq \mu_0 \Rightarrow \mu = \mu_1 \neq \mu_0$

- CLT $\rightarrow \bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ $\Rightarrow Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

- If H_0 is true: $Z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$
 - Z_0 close to 0 $\Rightarrow H_0$ probably true
 - Z_0 “much” different from 0 $\Rightarrow H_0$ probably NOT true

How “much”?

Critical Z point (Z_c)
Statistical Inference for population average μ

Hypothesis Test

- Example: Hypothesis testing about the population mean μ, at α%

\[
\begin{align*}
H_0: & \quad \mu = \mu_0 \\
H_1: & \quad \mu \neq \mu_0
\end{align*}
\]

Test statistic: \[Z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \]
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 \[H_0: \mu = \mu_0 \]
 \[H_1: \mu \neq \mu_0 \]

 Test statistic: \[Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]

Critical Points

- $Z_{\frac{\alpha}{2}}$
- $Z_{1-\frac{\alpha}{2}}$
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 \[H_0: \mu = \mu_0 \]
 \[H_1: \mu \neq \mu_0 \]

 Test statistic:
 \[Z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \]

 Rejection Region
Statistical Inference for population average μ

Hypothesis Test

• **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 H_0: $\mu = \mu_0$

 H_1: $\mu \neq \mu_0$

Test statistic:

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Decision Rule:

Reject H_0 if

$$Z_0 < Z_{\alpha/2} \quad \text{or} \quad Z_0 > Z_{1 - \alpha/2}$$
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 \[
 H_0: \mu = \mu_0 \\
 H_1: \mu < \mu_0
 \]

 Test statistic:

 \[
 Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}
 \]
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 H_0: $\mu = \mu_0$

 H_1: $\mu < \mu_0$

Test statistic:

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Rejection Region
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 $H_0: \mu = \mu_0$

 $H_1: \mu < \mu_0$

 Test statistic:

 $$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Decision Rule:

Reject H_0 if

$$Z_0 < Z_\alpha$$
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 H_0: $\mu = \mu_0$

 H_1: $\mu > \mu_0$

 Test statistic: $Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$

Critical Point
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha\%$

 H_0: $\mu = \mu_0$
 H_1: $\mu > \mu_0$

 Test statistic: $Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$

Rejection Region
Statistical Inference for population average μ

Hypothesis Test

- **Example**: Hypothesis testing about the population mean μ, at $\alpha%$

 H_0: $\mu = \mu_0$

 H_1: $\mu > \mu_0$

 Test statistic:

 \[Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]

Decision Rule:

Reject H_0 if

\[Z_0 > Z_{1-\alpha} \]
Key Concepts in Hypothesis Testing

• Decision Rule:
 – What values of the test statistic would indicate the H_0 is probably not supported by the observed data, hence it should be rejected.

• P-value:
 – The exact level of significance, i.e., the probability of observing a value as extreme or more extreme than the calculated test statistic under the null hypothesis H_0, e.g.,

$$p\text{-value} = P(Z > Z_0)$$
Statistical Inference for population average μ

Steps in Hypothesis Testing

1. Set the null hypothesis H_0 and alternative hypothesis H_1.
2. Set a level of significance $\alpha\%$.
3. Calculate a test statistic.
4. Decision rule or
5. P-value of the test statistic (preferred)
6. Conclusion
Statistical Inference for population average μ

- We will cover examples for three cases

 - 1) Single population: one sample t-test
 • Interested in the population mean

 - 2) Two independent population: two sample t-test
 • Interested in comparing two population means

 - 3) Two dependent population: Paired t test
 • Interested in comparing mean changes within subjects (before vs. after)
• **Example:** We want to test the following hypothesis about the population mean \(\mu \) of the systolic blood pressure of the Framingham Heart Study population, at \(\alpha=5\% \) level of significance:

\[
H_0: \mu = 130 \quad \text{vs} \quad H_1: \mu \neq 130
\]

• **Test statistic:**

\[
Z_0 = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{136.32 - 130}{22.8/\sqrt{11627}} = 29.91
\]

• **Conclusion:** \(Z_0 = 29.91 \implies \text{reject } H_0 \text{ if } |Z_0| > 1.96 \)

• **p-value:** \(P(Z>|Z_0|) = 2*P(Z>29.91) < 0.0001 \)

```r
t.test(dat1$sysbp, mu = 130)
> t.test(dat1$sysbp, mu = 130)

One Sample t-test

data:  dat1$sysbp
t = 29.911, df = 11626, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 130
95 percent confidence interval: 135.9097 136.7386
sample estimates:
mean of x
136.3241
```
Statistical Inference for population average μ

One-sided hypothesis Test

• **Example:** We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at $\alpha=5\%$ level of significance:

$$H_0: \mu = 130 \quad \text{vs} \quad H_1: \mu > 130$$

• Test statistic:

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{136.32 - 130}{22.8 / \sqrt{11627}} = 29.91$$

• Conclusion: $Z_0 = 29.91 \Rightarrow$ reject H_0: if $Z_0 > 1.68$

• p-value = $P(Z > Z_0) = P(Z>29.91) < 0.0001$

```r
t.test(dat1$sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130
> t.test(dat1$sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130

One Sample t-test

data:  dat1$sysbp
\text{t} = 29.91, \ df = 11626, \ p-value < 2.2e-16
alternative hypothesis: true mean is greater than 130
95 percent confidence interval:
135.9763     Inf
sample estimates:
mean of x
136.3241
```
Statistical Inference for population average μ

One-sided hypothesis Test

- **Example**: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at $\alpha=5\%$ level of significance:

 $H_0: \mu = 130$ vs $H_1: \mu < 130$

- **Test statistic**:
 \[
 Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{136.32 - 130}{22.8 / \sqrt{11627}} = 29.91
 \]

- **Conclusion**: $Z_0 = 29.91 \implies$ reject H_0: if $Z_0 < -1.68$

- **p-value** = $P(Z < Z_0) = 1$

```r
> t.test(dat1$sysbp, mu=130, alternative="less")
# one-sided H1: mu < 130
One Sample t-test

data:  dat1$sysbp
  t = 29.911, df = 11626, p-value = 1
alternative hypothesis: true mean is less than 130
95 percent confidence interval:
  -Inf 136.6719
sample estimates:     
  mean of x
  136.3241
```
Two Independent Samples

- **Case 2:** two-independent populations (two-samples)
- X_1 ‘sysbp’ of people *without previous CHD*, with μ_1 and unknown σ_1
- X_2 ‘sysbp’ of people *with previous CHD*, with μ_2 and unknown σ_2

Hypothesis Testing for $\mu_1 - \mu_2$

- Null hypothesis (H_0): $\mu_1 - \mu_2 = 0 \implies \mu_1 = \mu_2$
- Alternative hypothesis (H_1):
 - $\mu_1 - \mu_2 \neq 0 \implies \mu_1 \neq \mu_2$ (two-sided test), or
 - $\mu_1 - \mu_2 < 0 \implies \mu_1 < \mu_2$ (one-sided test), or
 - $\mu_1 - \mu_2 > 0 \implies \mu_1 > \mu_2$ (one-sided test)
Two Independent Samples

- **Case 2:** two-independent populations (two-samples)
 - **Case 2.A:** Known variances

 - X_1 ‘sysbp’ of people without previous CHD, with μ_1 and known σ_1
 - X_2 ‘sysbp’ of people with previous CHD, with μ_2 and known σ_2

Hypothesis Testing for $\mu_1-\mu_2$

- Test statistic: \[Z_0 = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0, 1) \]

- Decision Rules by H_1: Testing $H_0: \mu_1-\mu_2=0$ vs:

<table>
<thead>
<tr>
<th>H_1</th>
<th>Reject H_0 if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_1-\mu_2 \neq 0$</td>
<td>$Z_0 < Z_{\alpha/2}$ or $Z_0 > Z_{1-\alpha/2}$</td>
</tr>
<tr>
<td>$\mu_1-\mu_2 < 0$</td>
<td>$Z_0 < Z_{\alpha}$</td>
</tr>
<tr>
<td>$\mu_1-\mu_2 > 0$</td>
<td>$Z_0 > Z_{1-\alpha}$</td>
</tr>
</tbody>
</table>
Two Independent Samples

- **Case 2:** two-independent populations (two-samples)
- X_1 ‘sysbp’ of people **without prevchd**, with μ_1 and unknown σ_1
- X_2 ‘sysbp’ of people **with prevchd**, with μ_2 and unknown σ_2

Hypothesis Testing for μ_1-μ_2

$H_0: \mu_1 = \mu_2 \quad vs. \quad H_1: \mu_1 \neq \mu_2$

```
t.test(sysbp ~ prevchd, data=dat1) ## var.equal = FALSE

> t.test(sysbp ~ prevchd, data=dat1) ## var.equal = FALSE
  Welch Two Sample t-test

  data: sysbp by prevchd
  t = -13.036, df = 945.08, p-value < 2.2e-16
  alternative hypothesis: true difference in means is not equal to 0
  95 percent confidence interval:
  -13.54697 -10.00183
  sample estimates:
  mean in group 0 mean in group 1
  135.4714     147.2458
```
Two Dependent Samples

- **Case 3**: two-dependent populations (two-samples)
- X_1 ‘sysbp’ of people at baseline, with μ_1 and unknown σ_1
- X_2 ‘sysbp’ of people 6yrs after baseline, with μ_2 and unknown σ_2
- Suppose variable: $d=x_1-x_2$ from population with μ_d and σ_d

Hypothesis Testing for μ_d

- Null hypothesis (H_0): $\mu_d=0$
- Alternative hypothesis (H_1):
 - $\mu_d \neq 0$ (two-sided test), or
 - $\mu_d < 0$ (one-sided test), or
 - $\mu_d > 0$ (one-sided test)

Looks familiar? This is then same as one-sample t-test!
Power and Sample Size Determination

Power = 1 - P(Type II error) = 1 - P(do not reject H_0 | H_1 is true) = 1 − β

= P(reject H_0 | H_1 is true)

• E.g., the hypothesis: H_0: $\mu = \mu_0$ vs H_1: $\mu = \mu_1 > \mu_0$

• The power of this test is:

Power = P(reject H_0 | H_1 is true) = P($Z_0 > Z_{1-\alpha}$ | $\mu = \mu_1 > \mu_0$)
Power and Sample Size Determination

Power is a function of 1) standard deviation (σ),
2) sample size (n),
2) mean difference (or effect size),
3) type I error (α).

Power and Sample Size Determination

• The power of the test is:

\[
\text{Power} = P(\text{reject } H_0 \mid H_1 \text{ is true}) = P(Z_1 > Z_{1-\alpha} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}})
\] (2)

• The power of the test depends on:
 - \(n\) (standard deviation)
 \[\sigma \uparrow \Rightarrow \text{Power} \downarrow\]
 - \(n\) (sample size)
 \[n \uparrow \Rightarrow \text{Power} \uparrow\]
 - \(\alpha\) (significance level)
 \[\alpha \downarrow \Rightarrow \text{Power} \downarrow\]
 - \(\mu_1 - \mu_0\) (Effect Size)
 \[\text{ES} \uparrow \Rightarrow \text{Power} \uparrow\]
Sample Size Determination

Case 1: Single population (one-sample):

\[H_0: \mu = 100 \hspace{1cm} vs \hspace{1cm} H_1: \mu \neq 100 \]

- at \(\alpha = 5\% \) level of significance.
- We want a powerful test with power 80\% power.
- The test will reject the null hypothesis if the true mean is 5 units different from 100 (either smaller or larger – two-sided test). Namely, \(|\mu - \mu_0| = 5\).
- Suppose we know that standard deviation of the outcome variable \(\sigma = 9.5 \)
- What is the required sample size?
Sample Size Determination

Case 1: single population (one-sample)

\[H_0: \mu = 100 \quad \text{vs} \quad H_1: \mu \neq 100 \quad \text{(two-sided test)} \]

```r
library(pwr)
pwr.t.test(d = 5/9.5, sig.level = 0.05, power = 0.8, type = "one.sample")
```

```
> pwr.t.test(d = 5/9.5, sig.level = 0.05, power = 0.8, type = "one.sample")

one-sample t test power calculation

  n = 30.3112
d = 0.5263158
sig.level = 0.05
power = 0.8
alternative = two.sided
```

The total \(N = 31 \)
Sample Size Determination

Case 2: two dependent populations (two-samples) with unknown variance of the differences

Example: Suppose $s_d=7$. We want to test the hypothesis:

$$H_0: \mu_1=\mu_2=100 \ vs \ H_1: \mu_1\neq\mu_2$$

- at $\alpha=5\%$ level of significance.
- We want to detect $|\mu_1-\mu_2|=5$.
- With power=80%

What is the required sample size?
Sample Size Determination

Case 2: two dependent populations (two-samples)

\[H_0: \mu_1 = \mu_2 = 100 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2 \quad \text{(two-sided test)} \]

Assume:

→ unknown variance of the differences,

i.e., \(s_d = 7 \)

```r
pwr.t.test(d = 5/7, sig.level=0.05, power = 0.8, type="two.sample")

> pwr.t.test(d = 5/7, sig.level=0.05, power = 0.8, type="two.sample")

Two-sample t test power calculation

 n = 31.75708
 d = 0.7142857
 sig.level = 0.05
 power = 0.8
 alternative = two.sided

NOTE: n is number in *each* group
```

\(N = 32 \) per group. The total \(N = 64 \).