May 20th, 1:15 PM - 2:45 PM

Biosensing using Particle-(Bio)Polymer Sensor Arrays

Vincent Rotello

University of Massachusetts - Amherst

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cancer Biology Commons

Repository Citation

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Biosensing using Particle-(Bio)Polymer Sensor Arrays*

Vincent Rotello
University of Massachusetts

I) Sensing
a) Proteins
b) Bacteria
c) Mammalian cells

*DISCLOSURE

• I have no actual or potential conflict of interest in relation to this program or presentation.
Nanoparticles have unique and useful properties

- nanoparticle behavior is very different from corresponding bulk material

- Pd, Au, Ag optics and electronics: biomedical (vide infra) electronics, sensors

- Fe$_x$O$_y$, M$_x$O$_y$, FePt magnetic materials: memory, ferrofluids, MRI imaging, hyperthermic therapies

- CdSe, ZnSe semiconductor and fluorescent materials: bioimaging, electronics photovoltaics

- how can we employ these materials in real-world applications?
The key is engineering the particle interface

- our goal: use the atomic-level structural control of synthetic chemistry to control particle interactions and self-assembly

- controlled biomolecular interactions

- of course we can mix and match...

- and lessons learned with one core can be generalized

- programmed surface modification

- nanocomposite assembly
Biomacromolecule surface recognition using nanoparticle receptors

- why we want to bind biomacromolecule surfaces:

- inhibition of protein-protein interactions
- transcription regulation via DNA binding
- DNA, siRNA, and protein delivery
- sensors and diagnostics
The three challenges of biomacromolecule surface recognition

1) a large surface is required
- active site inhibition: isolated and concave target
- surface recognition: convex, solvent exposed (hint: protein-protein interactions bury 600-1400 Å² per protein!)
think: fingers in a glove vs palming a basketball

2) preorganized yet flexible receptor
- rigid doesn’t work
- too flexible, lose affinity and specificity

3) things have to line up
aka proper orientation of multivalent recognition elements

“why is protein surface recognition so hard?” (Andrea Corchoran, Genentech)
Nanoparticles provide at least two out of three (ain't bad!)

- SAM-covered nanoparticles provide regular shape
- and are the right size for biomacromolecule recognition
Specific or selective: Two different sensing paradigms
- one biomimetic, one not...

- specific recognition (e.g. ELISA)
 - strengths:
 - sensitive
 - wide range of antibodies available
 - challenges:
 - new protein = new antibody
 - difficult to quantify (i.e. not holistic)

- selective recognition (e.g. the nose)
 - strengths:
 - simpler hardware
 - excellent for complex mixtures
 - trainable for new “odors”
 - challenges:
 - more complex software
 - structural diversity required

- can we create nose-type sensors for proteins?
Step 1--selective receptors for proteins

- a wide variety of different nanoparticles can be made quickly
- the key--engineering the protein-particle interface

Step 2--transduction

- long experience shows nanoparticle+protein looks like nanoparticle
- gold nanoparticles are great fluorescence quenchers, though....

key features of fluorophore
 - anionic to bind cationic particle
 - multivalent (sticky) for selectivity

the answer--anionic PPEs provided by Uwe Bunz (Georgia Tech)
The targets
- commercially available proteins used as proof of concept
- proteins chosen to provide a range of size and charge

anionic
- β-galactosidase (pI = 4.6, 540 kDa)
- acid phosphatase (pI = 5.2, 110 kDa)
- alkaline phosphatase (pI = 5.7, 140 kDa)
- lipase (pI = 5.6, 58 kDa)
- BSA (pI = 4.8, 66.3 kDa)

cationic
- cytochrome c (pI = 10.7, 12.3 kDa)
- subtilisin A (pI = 9.4, 30.3 kDa)

Can we differentiate ‘em--especially the tough ones?
The targets
- commercially available proteins used as proof of concept
- proteins chosen to provide a range of size and charge

anionic
- b-galactosidase (pI = 4.6, 540 kDa)
- acid phosphatase (pI = 5.2, 110 kDa)
- alkaline phosphatase (pI = 5.7, 140 kDa)

lipase (pI = 5.6, 58 kDa)
BSA (pI = 4.8, 66.3 kDa)

nanoparticle

cationic
- cytochrome c (pI = 10.7, 12.3 kDa)
- subtilisin A (pI = 9.4, 30.3 kDa)

can we differentiate ‘em--especially the tough ones?
We can differentiate the proteins qualitatively

- different nanoparticles show different selectivity...
- ...providing a different pattern for each protein

Can this pattern be used to identify proteins?
Pattern recognition methodology provides protein identification

- Linear Discriminant Analysis (LDA) provides a tool for data analysis
- LDA maximizes the ratio of between-analyte and within-analyte variance

The test: 56 samples randomly chosen from training set
- the outcome: 96% accuracy in identification!
- ongoing studies: biofluids (serum looks promising!)
Closer to the real world—sensing in serum

- Sensing protein levels in serum is an important diagnostic tool
- The challenge: serum albumin: 50 mg/mL (700 μM)
- It’s like looking for needles in a haystack!

Proteins ‘spiked’ into undiluted human serum

- The first attempts using original polymer/particle mixture—not great
- It’s a modular system—let’s switch the polymer!
A closer look at the sensing process

- multiple equilibria involved in sensing
- some good, some bad...

Good

\[K_1 \rightleftharpoons K_{2a} \rightleftharpoons K_{overall} \]

Bad

\[K_3 \rightleftharpoons \]

- quenching reduces signal
- can we shut down \(K_3 \)?
Instead of a polymer, what about a biopolymer transducer?

- fluorescent proteins come in many shapes, sizes and colors...
- and are inherently biocompatible!

the five particles that worked (trust me on this...)

Green Fluorescent Protein
MW = 27 KDa, pI = 5.92
Step 2: Fluorescence response from protein “spiking”

- Analyte proteins added at 500 nM
- Constant total protein concentration maintained

Analyte proteins look different...

...Because they are each distinct!

- complete identification of analyte proteins
- verified by unknown analysis (93% accuracy)

we are sensitive enough--
ongoing studies exploring real-world serum samples
How about something bigger—identification of bacteria!

- Bacteria pose environmental, bioterrorism, food and water safety hazards
- These are all ostensibly “clean” environments
- Allowing us to use our “nose” to identify!

- The first attempts using original polymer/particle mixture=disaster
- Hypothesis: polymer interacts too strongly with bacteria
- Let’s test!
Same particles, different polymer

- “swallowtail” polymer designed to reduce non-specific interactions...
- the particles, however, remain the same..

NP1: $R = \begin{array}{c} \text{--} \\ \text{--} \end{array}$
NP2: $R = \begin{array}{c} \text{--} \\ \text{--} \end{array}$
NP3: $R = \begin{array}{c} \text{--} \\ \text{--} \end{array}$

notice--only three particles...because--
Three particles differentiate 13 bacteria!

- **Gram +/- no problem**
- **we can even differentiate between strains!**

![Graph showing differentiation of bacteria with particles](image)

- 10^5 cells/mL

- and LDA? we don’t need no stinking LDA!
- the fluorescence response is fully differentiated as-is
Three particles differentiate 13 bacteria!

- Gram +/- no problem
- we can even differentiate between strains!

- and LDA? we don’t need no stinking LDA!
- the fluorescence response is fully differentiated as-is

But we can do LDA if we want...

- full differentiation of bacteria
- we can differentiate between species and strains!

- identification of unknowns with >95% accuracy
- in minutes, with no sample preparation!
Identification of cancer via cell-surface interactions

- Challenge 1: differentiating cancerous from non-cancerous cells
- Challenge 2: distinguishing aggressive and non-aggressive cancer cells

Electrostatic polymer/particle conjugates

Fluorescence “OFF”

Fluorescence “ON”

NP1: $R = \text{--}$
NP2: $R = \text{--}$
NP3: $R = \text{--}$

Au

one polymer (the original)

three particles (the ones that worked best)
Starting easy--differentiating between cell types

- Different cells should have different surfaces...
- ...based on their function

![Image of bar charts and scatter plots showing fluorescence intensity and cell lines]

- Complete differentiation
- Now let's try something a bit more challenging

Step 2--same cell type, healthy vs cancerous vs metastatic

- three different human breast cell lines
- can we detect cancer?

Once again, complete differentiation

We can’t celebrate yet: the three cell lines come from different people

Are we detecting cancer, or individual variations?
The answer—3 isogenic cell lines from BALB/c mice

- identical starting point eliminates individual variations
- isogenic cell lines provide a particularly stringent test

Once again, complete differentiation
In a matter of minutes, based on cell-surface variations
The “My Time is Up” Summary:

Nanoparticles provide:

- Effective “chemical nose” sensors for:
 - Proteins
 - Proteins in serum (500 nm in 1 mM total protein)
 - Bacteria (species and strain)
 - Cancer (metastatic vs non)
Acknowledgments:

Alumni: postdocs
- Gilles Clavier
- Allan Goodman
- Alam Syed
- Ulf Drechsler
- C-C You
- Amitav Sanyal
- Tyler Norsten
- Roy Shenhar
- Belma Erdogan
- “Pops” Arumugam
- Amitav Sanyal
- Yuval Ofir

Alumni: grad students
- Bing Nie
- Eric Breinlinger
- Michael Greaves
- Angelika Niemz
- Robert Deans
- Alex Cuello
- Trent Galow
- Faysal Ilhan
- Eunhee Jeoung
- Mark Gray
- Andy Boal
- Kanad Das
- Kate Goodman
- Kevin Bardon
- Joe Simard
- Ray Thibault
- Joe Carroll
- Oktay Uzun
- Nick Fischer
- Ben Frankamp
- Rui Hong
- Basar Gider
- Ayush Verma
- Ali Bayir
- Hiroshi Nakade
- Hao Xu
- Gang Han
- Sud Srivastava
- Brian Jordan
- Rochelle Arvizo
- Minmoy De
- Bappa Samanta
- Partha Ghosh

Current: postdoc
- Avinash Bajaj

Current: grads
- Sarit Agasti
- Oscar Miranda
- Apiwat Champaosor
- Dap Patra
- Myoung-Hwan Kim
- Chae-Kyo Park
- Yu Xi
- Jiang Xu
- Subinoy Rana
- Chandra Subramani
- Dave Solfiel
- Brian Creran
- Xiaoning Li
- Youngdo Jeong
- Yi-Chuen Yeh
- Bo Yan
- Krishendu Saha
- Rui Tang
- Murat Tonga
- Daniel Moyano
- Brad Duncan

Collaborators
- Craig Martin
- Mike Knapp
- Richard Vachet
- Paul Lahti
- “Thai” Thayumanavan
- Todd Emrick (PSE)
- Tom Russell (PSE)
- Ken Carter (PSE)
- Mark Tuominen (Phys)
- Joe Jerry (Vet.An.Sci)
- Sallie Smith (Vet.Ani.Sci)
- Neil Forbes (Chem. E)
- Maria Santore (PSE)
- Jim Watkins (PSE)
- Uwe Bunz (Georgia Tech)
- Jean Chmielewski (Purdue)
- Bogdan Dragnea (IU)
- Graeme Cooke (Glasgow)
- M.B. Holl (Michigan)

Funding
- NIH, NSF, ONR, DOE
- NSF CHM-NSEC
- NSF MRSEC, Army
- Keck Foundation
- BAE