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those with the greatest differential expression to pursue first or those with characteristics
that make the most sense to anergy. I have begun this way, flagging the AK011178 EST
because of its impressive differential expression, Bace-2 because of its expression and
cell membrane localization, and Pac-1 because of its MAP kinase phosphatase activity.

A second approach would be to utilize other published microarray studies of
anergy, including those by Ali et al., Lechner et al., and Macian et al. (15;60;122) to
cross-reference the genes induced in this system, including the many genes at rest day 2,
with the large number of genes reported in the other systems to identify those worth
pursuing.

A third approach may be to induce anergy in other ways or in other cells, in vitro
and in vivo, isolate RNA and perform gRT-PCR to analyze the expression of the
candidates and discover which are universally associated with anergy. This “subscreen”
would be limited to a small number of candidates (i.e. the day 5 candidates described
above for which primers and conditions are already optimized) because qRT-PCR is not a
high-throughput method of analysis. A fourth, higher throughput approach would be to
design custom cDNA microarrays to screen all of the candidates identified from all of the
timepoints (including the many on rest day 2).

Fifth, a functional approach to screening anergy candidates is to create expression
vectors for a number of them, transfect them into A.E7s (difficult) or a transformed T cell
line like the EL-4 or Jurkat (easier), and screen the cells for disrupted IL-2 production.
Cells could be transfected with the candidate tagged with GFP, stimulated to produce IL-

2, and analyzed by two-color flow cytometry with intracellular staining for IL-2.
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Sixth, an interesting approach that I have instituted, is to take advantage of the
fact that Egr-2 is necessary for anergy induction and that it could be the sole factor to
fulfill the pattern described by Powell and colleagues (25). This implicates Egr-2 as a
possible “master switch” that sets in motion the induction of the anergy effector
molecules, which have yet to be identified. From this hypothesis, one could search for
candidates that are induced by Egr-2, involving the identification of candidates that are
not induced immediately with stimulation (not upregulated at the 12 hr timpoint) but are
induced and differentially expressed on day 2 or day 5. Genes following this pattern
include Bace-2, AK011178, and Pac-1. Then, one can utilize genome databases to pull
out ~2kb upstream of the transcription start site of these genes and scan them with a web-
based transcription factor binding site seach tool (such as TESS). Because Egr-2 binding
sequences have been well studied, it is relatively easy to determine if binding sites exist
in the promoter of a gene, the orientation in which it would bind, and how many sites
exist. After performing this search for Neuritin, Pac-1, and Bace-2, I have discovered an
Egr-2 binding site in each of the promoters, and two of the promoters have a single site
located on the negative strand and beginning between 36 and 47 base pairs upstream of
the transcription start site. In contrast, irrelevant promoters (2 separate 2kb promoters of
housekeeping genes) or random DNA sequence (up to 10kb) did not contain a single site.
This is exciting—not only does it lend additional credibility to these factors in anergy,
but they may be the important effectors directly downstream of Egr-2. In addition, if this
small séquence at this location in a promoter responds to anergy induction (even if Egr-2

alone doesn’t induce it), then it could be linked to a reporter gene (GFP) and a transgenic
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mouse generated that would, in theory, produce green T cells when anergic. This would
allow visualization of the role of anergy in tolerance directly in vivo.

While there is much to be done concerning the other anergy candidates, exciting
opportunities also exist for further study of Egr-2. First, because Egr-2 can be detected
using flow cytometry, more inspection of cells for Egr-2 expression could be performed
in mice tolerized to skin allografts using DST and ant: CD40L, the system instituted in
our lab. I have already shown some data on Egr-2 expression in T cells from these mice
but have only looked in mice with long-term grafts.

Second, one of the observations described above is that Egr-2 upregulation occurs
in stimulated anergic cells despite the block in the MAP kinase cascade and despite the
fact that junB (31) and Egr-1 are not induced. This suggests that Egr-2 upregulation in T
cells in response to stimulation is independent of signaling through the MAP kinase
cascade, since each branch of the cascade (ERK, JNK, p38) as well as Ras activity is
defective in anergic cells (33-35). Interestingly, Schwartz reported that blockade of each
branch of the MAP kinase cascade through inhibitors (ERK and 7p3 8) or knockout mice
(JNK) does not inhibit anergy induction [L. Luu, J. Powell & R.H. Schwartz, unpublished
data, described in (30)]. This lends additional support for the importance of Egr-2 in
anergy induction. It also may explain why anergic cells require exposure to their antigen
in order to remain anergic. Tanchot and colleagues describe a system of anergy induction
to peptide in vivo in which the T cells survive in vivo and remain tolerant as long as
antigen is present. If the anergic cells are transferred to a new host not expressing the

peptide, the cells regain responsiveness without proliferation. If the cells are transferred




128

to a new host expressing the antigen, they are induced into an even deeper level of anergy
(51). In the system described by Pape, et al., in which anergy is induced in TCR
transgenic cells in a normal host with peptide injection in the absence of adjuvant,
anergic cells lose unresponsiveness after a period of time. This loss of responsiveness is
preceeded by a clearing of antigen in the host; if the tolerizing antigen is repeatedly
introduced into the host the anergic cells remain hyporesponsive longer than with a single
injection (49). I have also observed this loss of anergy in the A.E7 cell line over time and
it correlates with a loss of Egr-2 expression (data not shown). It is possible that Egr-2
maintains the transcription of anergy effector molecules long-term, and that the loss of
Egr-2 expression explains the impermanence of anergy. Since even full stimulation of an
anergic cell is able to induce Egr-2 to maximal levels without inducing 1L-2 transcription
or proliferation, maybe the presence 6f antigen in the in vivo models discussed above
maintains hyporesponsiveness long-term by repeatedly inducing Egr-2. Further work
should be done, including directly showing that inhibitors of the MAP kinase cascade do
not affect Egr-2 induction. I would be interested to know if Egr-2 expression correlates
with anergy and its decline in the in vivo systems. It would also be interesting to know, in
the injected peptide system of Tanchot et al., whether periodic exposure of the in vivo
anergic cells to peptide in a context of productive activation would also maintain anergy
over prolonged periods. I would hypothesize yes, if the rechallenge effect is due to Egr-2
induction, since it is induced without proliferation even with full stimulation.

Third, concerning the role of Egr-2 in anergy in vitro, one could make a stable

transfectant of A.E7 T cells with Egr-2 expressed under an inducible promoter. This

W’”
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would allow observations to be made concerning direct and indirect roles of Egr-2 in IL-2
production, proliferation and the activation or repression of other genes.

Fourth is to stably transfect a vector containing hairpin siRNA under an inducible
promoter into A.E7 T cells. This would allow inducible knockdown of Egr-2 without the
confounding effects of electroporation and the transience of siRNA. Hairpin siRNA
consists of a short transcript of antisense RNA similar to siRNA but also contains the
sense sequence in the reverse order separated from the antisense by 5-9 nucleotides. This
results in a transcript that acts similar to transiently transfected double stranded siRNA
because, with the 5-9 nucleotides as a hairpin loop, the antisense and sense portions
anneal together. This has been reported to work well as a stable system to silence genes
(123).

Lastly, in order to study the effects of Egr-2 on anergy in vivo, an Egr-2 knockout
mouse would be valuable. The knockout mouse has been produced and reported but is
embryonic lethal due to defective hindbrain formation (124). The only way to study the
effect of eliminating Egr-2 on anergy in vivo would be to create a conditional knockout
mouse, lacking Egr-2 in only its T cells so that brain development and the development
of all other tissues is normal. However, this is a lengthy enterprise—for a description of
the method of making a conditional knockout using the Cre/lox system, see the
publication by Brian Sauer (125). Fortunately, another group has already produced and
published a mouse with floxed Egr-2 in order to study brain development (126). I have
contacted P. Charnay, the corresponding author, and he has agreed to provide us with

these mice in a collaboration effort. Mice expressing Cre under a T cell-specific promoter
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can be purchased and crossed to these mice, producing the conditional T cell Egr-2
knockout. With this mouse, not only could anergy induced by various methods be studied
in vivo, but more complicated systems of tolerance could be examined for the role that

Egr-2 and anergy play.

Conclusions: Modified model of anergy
induction

T cell stimulation resulting in IL-2 production and proliferation requires two
signals—a TCR signal and an additive CD28 signal. TCR crosslinking induces 3
downstream pathways: 1) Ras and Raf activation, activation of the MAP kinases ERK,
JNK, and p38, dimerization of fos and jun transcription factors (AP-1), production of
Egr-1, and their translocation into the nucleus; 2) generation of DAG, activation of
protein kinase C (PKC) leading to the degradation of IkB, and translocation of NFkB into
the nucleus; 3) generation of IP3, release of calcium into the cell, activation of
calcineurin, and dephosphorylation and translocation of NFAT into the nucleus. AP-1,
NF«B, and NFAT coactivate IL-2 transcription while NFAT alone induces transcription
of Egr-2. CD28 signaling strengthens the TCR signal possibly increasing NFxB
activation, prolonging the Ca™ influx and, most importantly, stabilizing IL-2 mRNA. IL-
2 production and autocrine signaling induces G1 —8 phase transition and proliferation

which diminishes Egr-2 production. When Egr-2 production is shut down between 2 and
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5 days following stimulation, anergy effectors are not induced. These cells remain
responsive to rechallenge with antigen (Figure 23a).

TCR stimulation without CD28 costimulation results in failure to produce IL-2,
probably through suboptimal NFkB activation and IL-2 mRNA instability. Because IL-2
production is not sufficient, proliferation does not occur and the Egr-2 protein level
remains elevated. As a result, Egr-2 activates other “anergy factors”, effectors that
directly mediate anergic hyporesponsiveness. Candidate anergy factors with late
induction identified in the Affymetrix GeneChip screen include: 1) the EST AK011178,
with potential Rho or Ras inactivating activity; 2) Pac-1, a known MAP kinase
phosphatase; 3) Bace-2, a membrane-bound secretase with unknown function in T cells;
and 4) Neuritin, a GPI-linked protein with unknown function in T cells (Figure 23b).

When anergic cells are rechallenged with both signals, NFAT is activated
normally. However, Ras and the MAP kinase cascade are inhibited, fos, jun and Egr-1 are
not induced and translocated into the nucleus, and IL-2 transcription may be actively
repressed. These effects are probably due to as yet unidentified anergy effector proteins;
any of the candidates described above may contribute to these functions. While activation
of NFAT alone (and possibly NF«B) is insufficient for IL-2 production (failing to cause
proliferation), it is able to re-induce Egr-2 to maximal levels. This strengthens the anergic
state, which otherwise disappears coincident with the loss of Egr-2 (Figure 24).

While anergy is probably mediated by a number of factors that work in concert,
Egr-2 may be a primary factor that activates a program of gene transcription inducing

effector molecules that mediate the many different aspects of the anergic phenotype
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observed, including hyporesponsiveness, differential homing, and cytokine production
(41;127). The fact that other studies have observed Egr-2 induction in tolerized
lymphocytes both in vitro and in vivo suggests that Egr-2 may function in anergy induced
by a variety of mechanisms. Based on the data presented here, identifying the factors
controlled by Egr-2 in these models should provide important insights into the

mechanisms involved in the maintenance of immune tolerance.
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Legend to Figure 23: Model of T cell activation and anergy induction. (A) T cell

stimulation through the TCR and CD28 results in IL-2 production, proliferation, and
anergy avoidance. (B) T cell stimulation through the TCR alone does not induce

sufficient IL-2 or proliferation and results in anergy induction.
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Legend to Figure 24: Model for failed proliferation following antigen rechallenge of
anergic cells. Even full stimulation of anergic cells does not induce IL-2 production or
proliferation. This is probably due to anergy effector proteins induced by sustained Egr-2

expression. Egr-2 is re-induced in these cells, prolonging anergic hyporesponsiveness.
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