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expression compared to unstimulated control cells (118), suggesting that Egr-2 may be

important in B cell tolerance as well.

Because Egr-2 knockdown after anergy had been induced may have little or no

effect on the responsiveness of anergic cells, and since Egr-2 is unikely to directly

inbit signaling components, I believe that the role of Egr-2 in anergy is primarly to

induce effector molecules that mediate the hyporesponsive phenotye. In collaboration

with Ken, I am searchig for Egr-2 targets of transcription that can regulate activation of

the upstream components of the MAP kinase cascade. In fact, one of the anergy

candidates upregulated in anergic cells at later timepoints is P AC- l-a protein with

demonstrated MAP kinase phosphatase activity. Another, AKO ll178 , is an EST that

appears to have homology to RhoGAP8, a protein that inactivates Rho by converting its

GTP to GDP. This is signficant because Ras, the upstream activator ofthe MAP kinase

cascade, is inactivated in a similar way, leaving the possibility that AKOll178 could have

Ras-GAP activity. As mentioned in the introduction, many believe that anergic cells

upregulate a RasGAP, however, none has yet been identified. In addition to these two

candidates, there are a number of others that have yet to be characteried for their

fuction in anergy, including Bace-, neurtin, osteopontin, and other EST's.

The future for the project described in this thesis is very exciting, as the data

generated from the GeneChip screen has just begu to be tapped with the characterization

of the role for Egr-2 in anergy. It is possible that any of the other genes identified in the

screen could also playa significant part in the anergic phenotype. Approaches to fuher

characterizing other anergy candidates may take many different forms. One is to identify



those with the greatest differential expression to pursue first or those with characteristics

that make the most sense to anergy. I have begu this way, flagging the AKOl1178 EST

because of its impressive differential expression, Bace-2 because of its expression and

cell membrane localization, and Pac- l because of its MA kinase phosphatase activity.

A second approach would be to utilize other published microarray studies of

anergy, including those by Ali et al. , Lechner et al. , and Macian et al. (15;60; l22) to

cross-reference the genes induced in this system, including the many genes at rest day 2

with the large number of genes reported in the other systems to identify those worth

pursumg.

A thd approach may be to induce anergy in other ways or in other cells, in vitro

and in vivo, isolate RNA and perform qRT-PCR to analyze the expression of the

candidates and discover which are universally associated with anergy. This "subscreen

would be limited to a small number of caridates (i.e. the day 5 candidates described

above for which priers and conditions are already optimized) because qRT-PCR is not a

high-throughput method of analysis. A four, higher throughput approach would be to

design custom cDNA micro arrays to screen all of the candidates identified from all of the

timepoints (including the many on rest day 2).

Fifth, a fuctional approach to screening anergy candidates is to create expression

vectors for a number of them, transfect them into A.E7s (diffcult) or a transformed T cell

line like the EL-4 or Jurkat (easier), and screen the cells for disrupted IL-2 production.

Cells could be transfected with the candidate tagged with GFP, stimulated to produce IL-

, and analyzed by two-color flow cytometry with intracellular staining for IL-2.

125
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Sixth, an interesting approach that I have instituted, is to take advantage of the

fact that Egr-2 is necessar for anergy induction and that it could be the sole factor to

fulfill the pattern described by Powell and colleagues (25). This implicates Egr-2 as a

possible "master switch" that sets in motion the induction of the anergy effector

molecules , which have yet to be identified. From this hypothesis, one could search for

candidates that are induced by Egr- , involving the identification of candidates that are

not induced immediately with stimulation (not upregulated at the 12 hr timpoint) but are

induced and differentially expressed on day 2 or day 5. Genes following this pattern

include Bace- , AKOl1178 , andPac- l. Then, one can utilize genome databases to pull

out -2kb upstream of the transcription start site of these genes and scan them with a web-

based transcription factor binding site seach tool (such as TESS). Because Egr-2 binding

sequences have been well studied, it is relatively easy to determine if binding sites exist

in the promoter of a gene, the orientation in which it would bind, and how many sites

exist. After performng this search for Neurtin, Pac- , and Bace- , I have discovered an

Egr-2 binding site in each of the promoters, and two of the promoters have a single site

located on the negative strand and beging between 36 and 47 base pairs upstream of

the transcription star site. In contrast, irrelevant promoters (2 separate 2kb promoters of

housekeeping genes) or random DNA sequence (up to 10kb) did not contain a single site.

This is exciting-not only does it lend additional credibility to these factors in anergy,

but they may be the important effectors directly downstream of Egr-2. In addition, if this

small sequence at this location in a promoter responds to anergy induction (even if Egr-

alone doesn t induce it), then it could be lined to a reporter gene (GFP) and a transgenic
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mouse generated that would, in theory, produce green T cells when anergic. This would

allow visualization of the role of anergy in tolerance directly in vivo.

While there is much to be done concerning the other anergy candidates, exciting

opportties also exist for fuher study of Egr-2. First, because Egr-2 can be detected

using flow cytometr, more inspection of cells for Egr-2 expression could be performed

in mice tolerized to skin allografts using DST and anti-CD40L, the system instituted in

our lab. I have already shown some data on Egr-2 expression in T cells from these mice

but have only looked in mice with long- term grafts.

Second, one of the observations described above is that Egr-2 upregulation occurs

in stimulated anergic cells despite the block in the MAP kiase cascade and despite the

fact that jun (31) and Egr- l are not induced. This suggests that Egr-2 upregulation in T

cells in response to stimulation is independent of signaling through the MAP kinase

cascade, since each branch of the cascade (ERK, JNK, p38) as well as Ras activity is

defective in anergic cells (33-35). Interestingly, Schwarz reported that blockade of each

branch of the MAP kiase cascade through inhbitors (ERK and p38) or knockout mice

(JNK) does not inibit anergy induction (L. Luu, 1. Powell & R.H. Schwartz, unpublished

data, described in (30)). This lends additional support for the importce of Egr-2 in

anergy induction. It also may explain why anergic cells require exposure to their antigen

in order to remain anergic. Tanchot and colleagues describe a system of anergy induction

to peptide in vivo in which the T cells surive in vivo and remain tolerant as long as

antigen is present. If the anergic cells are transferred to a new host not expressing the

peptide , the cells regain responsiveness without proliferation. If the cells are transferred
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to a new host expressing the antigen, they are induced into an even deeper level of anergy

(51). In the system described by Pape, et ai. , in which anergy is induced in TCR

transgenic cells in a normal host with peptide injection in the absence of adjuvant

anergic cells lose unresponsiveness after a period of time. This loss of responsiveness is

preceeded by a clearing of antigen in the host; if the tolerizing antigen is repeatedly

introduced into the host the anergic cells remain hyporesponsive longer than with a single

injection (49). I have also observed this loss of anergy in the A.E7 cell line over time and

it correlates with a loss of Egr-2 expression (data not shown). It is possible that Egr-

maintains the transcription of anergy effector molecules long-term, and that the loss of

Egr-2 expression explains the impermanence of anergy. Since even full stimulation of an

anergic cell is able to induce Egr-2 to maximal levels without inducing IL-2 transcription

or proliferation, maybe the presence of antigen in the in vivo models discussed above

maintains hyporesponsiveness long-term by repeatedly inducing Egr-2. Further work

should be done, including directly showing that inbitors of the MA kinase cascade do

not affect Egr-2 induction. I would be interested to know if Egr-2 expression correlates

with anergy and its decline in the in vivo systems. It would also be interesting to know, in

the injected peptide system of Tanchot et ai. , whether periodic exposure of the in vivo

anergic cells to peptide in a context of productive activation would also maintain anergy

over prolonged periods. I would hypothesize yes, if the rechallenge effect is due to Egr-

induction, since it is induced without proliferation even with full stimulation.

Third, concerning the role of Egr-2 in anergy in vitro, one could make a stable

transfectant of A.E7 T cells with Egr-2 expressed under an inducible promoter. This
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would allow observations to be made concernng direct and indirect roles of Egr-2 in IL-2

production, proliferation and the activation or repression of other genes.

Fourth is to stably transfect a vector containg hairin siRNA under an inducible

promoter into A.E7 T cells. This would allow inducible knockdown of Egr-2 without the

confounding effects of electroporation and the transience of siRNA. Hairpin siRNA

consists of a short transcript of antisense RNA similar to siRNA but also contains the

sense sequence in the reverse order separated from the antisense by 5-9 nucleotides. This

results in a transcript that acts similar to transiently transfected double stranded siRNA

because, with the 5-9 nucleotides as a hairin loop, the antisense and sense portions

anneal together. This has been reported to work well as a stable system to silence genes

(123).

Lastly, in order to study the effects of Egr-2 on anergy in vivo, an Egr-2 knockout

mouse would be valuable. The knockout mouse has been produced and reported but is

embryonic lethal due to defective hindbrain formation (124). The only way to study the

effect of eliminating Egr-2 on anergy in vivo would be to create a conditional knockout

mouse, lackig Egr-2 in only its T cells so that brain development and the development

of all other tissues is normal. However, this is a lengthy enterprise-for a description of

the method of makg a conditional knockout using the Cre/lox system, see the

publication by Brian Sauer (125). Fortnately, another group has already produced and

published a mouse with floxed Egr-2 in order to study brain development (126). I have

contacted P. Chamay, the corresponding author, and he has agreed to provide us with

these mice in a collaboration effort. Mice expressing Cre under a T cell-specific promoter
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can be purchased and crossed to these mice, producing the conditional T cell Egr-

knockout. With this mouse, not only could anergy induced by various methods be studied

in vivo , but more complicated systems of tolerance could be examined for the role that

Egr-2 and anergy play.

Conclusions: Modified model of anergy
induction

T cell stimulation resulting in IL-2 production and proliferation requires two

signals-a TCR signal and an additive CD28 signal. TCR crosslinkng induces 3

downstream pathways: 1) Ras and Raf activation, activation of the MAP kinases ERK

JNK, and p38 , dimerization offos andjun transcription factors (AP- l), production of

Egr- , and their translocation into the nucleus; 2) generation ofDAG, activation of

protein kinase C (PKC) leading to the degradation ofIKB , and translocation ofNFKB into

the nucleus; 3) generation of IP3, release of calcium into the cell, activation of

calcineurin, and dephosphorylation and translocation ofNFAT into the nucleus. AP-

NFKB , and NF A T coactivate IL- 2 transcription while NF AT alone induces transcription

ofEgr-2. CD28 signaling strengthens the TCR signal possibly increasing NFKB

activation, prolonging the Ca ++ influx and, most importantly, stabilizing IL-2 mRA. IL-

2 production and autocrie signaling induces G 1 S phase transition and proliferation

which diminishes Egr-2 production. When Egr-2 production is shut down between 2 and
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5 days following stimulation, anergy effectors are not induced. These cells remain

responsive to rechallenge with antigen (Figure 23a).

TCR stimulation without CD28 co stimulation results in failure to produce IL-2

probably through suboptimal NFKB activation and IL-2 mRA instability. Because IL-2

production is not suffcient, proliferation does not occur and the Egr-2 protein level

remains elevated. As a result, Egr-2 activates other "anergy factors , effectors that

directly mediate anergic hyporesponsiveness. Candidate anergy factors with late

induction identified in the Affymetrix GeneChip screen include: 1) the EST AKOlll78

with potential Rho or Ras inactivating activity; 2) Pac- , a known MAP kinase

phosphatase; 3) Bace- , a membrane-bound secretase with unown fuction in T cells;

and 4) Neuritin, a GPI- linked protein with unown fuction in T cells (Figue 23b).

When anergic cells are rechallenged with both signals, NF A T is activated

normally. However, Ras and the MAP kiase cascade are inbited, fos, jun and Egr- l are

not induced and translocated into the nucleus, and IL-2 transcription may be actively

repressed. These effects are probably due to as yet unidentified anergy effector proteins;

any of the candidates described above may contribute to these fuctions. While activation

ofNFAT alone (and possibly NFKB) is insufficient for IL-2 production (failing to cause

proliferation), it is able to re- induce Egr-2 to maximal levels. This strengthens the anergic

state, which otherwise disappears coincident with the loss of Egr-2 (Figue 24).

While anergy is probably mediated by a number of factors that work in concert

Egr-2 may be a priary factor that activates a program of gene transcription inducing

effector molecules that mediate the many different aspects of the anergic phenotype
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observed, including hyporesponsiveness, differential homing, and cytokine production

(41;127). The fact that other studies have observed Egr-2 induction in tolerized

lymphocytes both in vitro and in vivo suggests that Egr-2 may function in anergy induced

by a variety of mechansms. Based on the data presented here, identifying the factors

controlled by Egr-2 in these models should provide important insights into the

mechanisms involved in the maintenance of immune tolerance.
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Legend to Figure 23: Model ofT cell activation and anergy induction. (A) T cell

stimulation through the TCR and CD28 results in IL-2 production, proliferation, and

anergy avoidance. (B) T cell stimulation through the TCR alone does not induce

suffcient IL-2 or proliferation and results in anergy induction.

...
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Legend to Figure 24: Model for failed proliferation following antigen rechallenge of

anergic cells. Even full stimulation of anergic cells does not induce IL-2 production or

proliferation. This is probably due to anergy effector proteins induced by sustained Egr-

expression. Egr-2 is re- induced in these cells, prolonging anergic hyporesponsiveness.
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