May 20th, 8:30 AM - 9:00 AM

What is Translational Research?

Catarina I. Kiefe

University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Community-Based Research Commons, Educational Assessment, Evaluation, and Research Commons, Health Services Research Commons, Science and Technology Studies Commons, and the Translational Medical Research Commons

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
What is Translational Research?

Catarina Kiefe, MD, PhD
University of Massachusetts Medical School
Dept of Quantitative Health Sciences
May 20, 2011
DISCLOSURE

I have no actual or potential conflict of interest in relation to this program or presentation.
Overview

• Translational Science
 • Why?
 • What?
 • The translational spectrum: a changing nomenclature
• “Bench to beside”: a limited paradigm
 • Wrong endpoint (bedside)
 • Wrong direction: what about “bedside” to bench?
• Charge for the day
Why Translational Science?

• Median time from description of a new discovery in a basic science journal to publication of use of this discovery in a highly cited article in the medical literature: 24 years

• Mean time to implement a new clinical research finding into practice: 17 years
 • Balas, Boren, *Yearbook Medical Informatics*, 2000
Translational Blocks in the Clinical Research Continuum

Translational Research in US

- Introduced as part of NIH Roadmap

- NIH Definitions used in CTSA funding (e.g. RFA-RM-10-020)
 - Clinical research comprises studies and trials in human subjects
 - Translational research includes two areas of translation:
 - Applying findings from laboratory research and preclinical studies to the development of trials and studies in humans
 - Enhancing the adoption of best practices in the community
Translational Research in Europe

• **UK Cooksey Report:**
 - Process of taking the findings of either basic or clinical research to produce innovations in health care settings
 Cooksey 2006. The Stationery Office. London

• **The European Advanced Translational Research Infrastructure in Medicine (EATRIS)**
 - Funded in part by European Union, to be established through both public and private funds
 - “Maintain Europe's competitiveness in biomedical research and health industry”
Adapted from Waldman and Terzic. *Clin Transl Sc* 2010 3(5): 254-7
The Continuum of Clinical and Translational Science

T0
- Targets
- Biomarkers
- Genes
- Pathways
- Mechanisms

T1
- First in Human
- Phase I-II Trials
- Proof of Concept

T2
- Phase III Trials
- Clinical Efficacy
- Clinical Guidelines

T3
- Dissemination
- Community Engagement
- Health Services Research
- Comparative Effectiveness

T4
- Public Health
- Prevention
- Population Health Impact
- Behavioral Modifications
- Lifestyle Modifications

Adapted from Waldman and Terzic. Clin Transl Sc 2010 3(5): 254-7
The Continuum of Clinical and Translational Science

<table>
<thead>
<tr>
<th>Level</th>
<th>Stage</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>Targets</td>
<td>Biomarkers, Genes, Pathways, Mechanisms</td>
</tr>
<tr>
<td>T1</td>
<td>First in Human</td>
<td>Phase I-II Trials, Proof of Concept</td>
</tr>
<tr>
<td>T2</td>
<td>Phase III Trials</td>
<td>Clinical Efficacy, Clinical Guidelines</td>
</tr>
<tr>
<td>T3</td>
<td>Dissemination</td>
<td>Community Engagement, Health Services Research, Comparative Effectiveness</td>
</tr>
<tr>
<td>T4</td>
<td>Public Health</td>
<td>Prevention, Population Health Impact, Behavioral Modifications, Lifestyle Modifications</td>
</tr>
</tbody>
</table>

Adapted from Waldman and Terzic. *Clin Transl Sc* 2010 3(5): 254-7
The Broad Spectrum of Biomedical Research: Genomics

- **T0**: Genome
- **T1**: Moves genome-based discovery into candidate health application (e.g., genetic tests)
- **T2**: Assesses value of application for health practice, leads to evidence-based guidelines
- **T3**: Moves guidelines/evidence into practice
- **T4**: Evaluates “real world” health outcomes of genomic applications
- **T5**: Studies genomics in the context of the social determinants of health
- **<3% of genomic research focuses on T2 – T5**
T1 vs. T2+: Changing Boundaries

- Initially, translational research required “whole humans” or human population groups as study units. Evolving nomenclature:
 - T1 research takes knowledge from the bench (“wet lab”) to clinical knowledge
 - Initially: Phase 1-3 clinical trial (including RCTs)
 - Recently: also “T0”, mice, even cells…
 - T2+ research takes clinical knowledge into realized human benefit
 - E.g. Group-randomized implementation trials
 - Recently: also phase 3 clinical trials
T1 versus T2+ Research

• T2+ defining elements:
 • “dry lab” research that uses statistics and epidemiology as its basic tools
 • The study units may be individual humans, groups of humans (populations), or health systems

• T1 defining elements:
 • May also use “wet lab” tools but used to involve “whole humans”
 • Study unit now from lab animal to individual patient

• Cultural innovations for both:
 • Transdisciplinary, team science
 • Bidirectionality as emerging concept
Overview

✓ Translational Science
 ✓ Why?
 ✓ What?
 ✓ The translational spectrum: a changing nomenclature

• “Bench to beside”: a limited paradigm
 • Wrong endpoint (bedside)
 • Wrong direction: what about “bedside” to bench?

• Charge for the day
Example: Type 2 Diabetes Prevention

- **Chronic hyperglycemia causes severe end-organ damage through fairly well understood pathophysiology (T0, T1)**
- **T0-T1 research has resulted in multiple medications that control hyperglycemia**
- **Solid clinical research links Type 2 diabetes to overweight/obesity (T2 - T3): the diabesity epidemic**
Why T2+ Research?

• The diabesity epidemic

Prevalence of obesity among men in the US

With a parallel rise in the incidence of diabetes

Freedman MMWR 2011
Important Translational Question

• Weight loss and other lifestyle modifications improve glucose control in patients with diabetes

• Can lifestyle modification and weight reduction PREVENT diabetes?
Diabetes Prevention Program (DPP)

- RCT: 3,234 persons at 27 centers, followed for 10 years. \(\text{Knowler, NEJM 2002; Knowler, Lancet 2009} \)
- Cumulative incidence of DM2 lowest in lifestyle group:
 - 58% lower incidence at 1 year
 - 34% lower incidence at 10 years
- Classical efficacy study (T1 – T2)
 - Oral GTT as the screening tool
 - Very intensive, expensive one-on-one intervention
 - Educated population, all literate
 - Overweight/obesity assumed important mediator
Why Research Beyond the “classical” RCT?

- DPP efficacy study notwithstanding, diabesity epidemic marches on

- Lawrence Latino “DPP” (LLDPP)
 - community-based effectiveness study – “real world”
 - 252 at risk pts randomized
 - Group-based less intensive intervention
 - Inexpensive
 - 30% of population illiterate in Spanish and English
DPP vs. LLDPP outcomes at 1 year

<table>
<thead>
<tr>
<th>Improvements in Outcomes at 1 year *</th>
<th>DPP</th>
<th>LDPPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lbs)</td>
<td>17</td>
<td>3.1</td>
</tr>
<tr>
<td>HgbA1c (%)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* Numbers approximate; personal communication from I Ockene

Why similar effect of intervention on hyperglycemia, yet much weaker effect on weight??
Why different effects
LLDDP vs. DPP?

• Efficacy vs. effectiveness study?
 • But effect on HgbA1c was similar

• Different populations?
 • Some Latino groups, Native Americans know to be exquisitely sensitive to weight gain re diabetes incidence
 • Are we seeing reverse effect here?

• Need to investigate mechanism that underlies these differences: genetics?
Bidirectionality

• Should our approach remain linear?

OR

• Should transdisciplinary teams implement true bidirectionality?
Team Science, Bidirectionality

T0 → T5
T5 → T0
T0 → T1
T1 → T0
T1 → T2
T2 → T1
T2 → T3
T3 → T2
T3 → T4
T4 → T3
T4 → T5
T5 → T4

Molecules
Population Health
Health Care
3 Historical Examples of Bidirectionality

Rutter and Plomin, Psychol Med 2009

- **Tobacco and lung cancer**
 - First: Epidemiologic studies *Doll and Hill, BMJ 1950 and 1954*
 - Later: clinical and animal studies, then gene expression studies *Wen, Mod Path 2011*

- **Lipids and heart disease**
 - Initial rabbit studies ignored (1913)
 - Epidemiologic evidence in 1956
 - Basic lab research in ‘70s: model of how LDL causes atherosclerotic lesions
 - LRC trial in the 80s, large statin RCTs in 90’s

- **Fetal alcohol syndrome**
 - Clinical observations define syndrome *Kl Jones, Lancet 1973*
 - Mice studies confirm
SUMMARY

• Translational research is
 • Transdisciplinary
 • Bidirectional
 • Driven by the need to move from knowledge for the sake of knowledge to realized human benefit
 • Reminds us that “Science without conscience is the soul’s perdition” *Rabelais, Pantagruel, 1572*
QUESTIONS??????
Charge for the Day

• Look for bidirectionality
 • Keynote lecture
 • Mini-symposia
 • Posters
• Think transdisciplinary teams
 • Next presentation, lunch, coffee breaks
• Tell us how to do better
 • Fill-out evaluations
• HAVE FUN
 • All day long and evening reception with posters
 • 5 prizes for best posters at evening reception