Title

Coordinated Dynamics of RNA Splicing Speckles in the Nucleus

UMMS Affiliation

Department of Cell and Developmental Biology

Publication Date

2016-06-01

Document Type

Article

Disciplines

Cell Biology | Cellular and Molecular Physiology

Abstract

Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.

DOI of Published Version

10.1002/jcp.25224

Source

J Cell Physiol. 2016 Jun;231(6):1269-75. doi: 10.1002/jcp.25224. Epub 2015 Nov 24. Link to article on publisher's site

Journal/Book/Conference Title

Journal of cellular physiology

Related Resources

Link to Article in PubMed

PubMed ID

26496460

Share

COinS