UMMS Affiliation

Department of Cell Biology

Date

1-7-1998

Document Type

Article

Subjects

Actins; Amino Acid Sequence; Animals; Carrier Proteins; Cattle; Cell Fractionation; Cloning, Molecular; Dogs; Epithelial Cells; Gelsolin; Intercellular Junctions; Kidney; Membrane Proteins; Microfilament Proteins; Microfilaments; Molecular Sequence Data; *Multigene Family; Neutrophils; Nuclear Localization Signals; Protein Binding; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Tissue Distribution

Disciplines

Cell Biology | Life Sciences | Medicine and Health Sciences

Abstract

Actin-binding membrane proteins are involved in both adhesive interactions and motile processes. We report here the purification and initial characterization of p205, a 205-kD protein from bovine neutrophil plasma membranes that binds to the sides of actin filaments in blot overlays. p205 is a tightly bound peripheral membrane protein that cosediments with endogenous actin in sucrose gradients and immunoprecipitates. Amino acid sequences were obtained from SDS-PAGE-purified p205 and used to generate antipeptide antibodies, immunolocalization data, and cDNA sequence information. The intracellular localization of p205 in MDBK cells is a function of cell density and adherence state. In subconfluent cells, p205 is found in punctate spots along the plasma membrane and in the cytoplasm and nucleus; in adherent cells, p205 concentrates with E-cadherin at sites of lateral cell-cell contact. Upon EGTA-mediated cell dissociation, p205 is internalized with E-cadherin and F-actin as a component of adherens junctions "rings." At later times, p205 is observed in cytoplasmic punctae. The high abundance of p205 in neutrophils and suspension-grown HeLa cells, which lack adherens junctions, further suggests that this protein may play multiple roles during cell growth, adhesion, and motility. Molecular cloning of p205 cDNA reveals a bipartite structure. The COOH terminus exhibits a striking similarity to villin and gelsolin, particularly in regions known to bind F-actin. The NH2 terminus is novel, but contains four potential nuclear targeting signals. Because p205 is now the largest known member of the villin/gelsolin superfamily, we propose the name, "supervillin." We suggest that supervillin may be involved in actin filament assembly at adherens junctions and that it may play additional roles in other cellular compartments.

Rights and Permissions

Citation: J Cell Biol. 1997 Dec 1;139(5):1255-69. Link to article on publisher's website

Related Resources

Link to article in PubMed

PubMed ID

9382871

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.