UMMS Affiliation

Program in Systems Biology; Department of Biochemistry and Molecular Pharmacology

Date

7-21-2015

Document Type

Article

Disciplines

Biochemistry | Genetics | Genomics | Molecular Biology | Structural Biology | Systems Biology

Abstract

We have examined the three-dimensional organization of the yeast genome during quiescence by a chromosome capture technique as a means of understanding how genome organization changes during development. For exponentially growing cells we observe high levels of inter-centromeric interaction but otherwise a predominance of intrachromosomal interactions over interchromosomal interactions, consistent with aggregation of centromeres at the spindle pole body and compartmentalization of individual chromosomes within the nucleoplasm. Three major changes occur in the organization of the quiescent cell genome. First, intrachromosomal associations increase at longer distances in quiescence as compared to growing cells. This suggests that chromosomes undergo condensation in quiescence, which we confirmed by microscopy by measurement of the intrachromosomal distances between two sites on one chromosome. This compaction in quiescence requires the condensin complex. Second, inter-centromeric interactions decrease, consistent with prior data indicating that centromeres disperse along an array of microtubules during quiescence. Third, inter-telomeric interactions significantly increase in quiescence, an observation also confirmed by direct measurement. Thus, survival during quiescence is associated with substantial topological reorganization of the genome.

Rights and Permissions

Citation: Nucleic Acids Res. 2015 Jul 21. pii: gkv723. doi: 10.1093/nar/gkv723. [Epub ahead of print] Link to article on publisher's site

Comments

Copyright The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Related Resources

Link to Article in PubMed

Journal Title

Nucleic acids research

PubMed ID

26202961

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.