Title

Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease

UMMS Affiliation

Department of Cancer Biology; Department of Cell Biology

Date

2-15-2011

Document Type

Article

Medical Subject Headings

Adenocarcinoma; Animals; Antineoplastic Agents; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Disease Progression; Drug Evaluation, Preclinical; Female; Genetic Predisposition to Disease; Guanidines; HSP90 Heat-Shock Proteins; Lactams, Macrocyclic; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Molecular Targeted Therapy; Neoplasm Metastasis; Prostatic Intraepithelial Neoplasia; Prostatic Neoplasms

Disciplines

Cancer Biology | Cell Biology

Abstract

BACKGROUND: The molecular chaperone heat shock protein-90 (Hsp90) is a promising cancer drug target, but current Hsp90-based therapy has so far shown limited activity in the clinic.

METHODS: We tested the efficacy of a novel mitochondrial-targeted, small-molecule Hsp90 inhibitor, Gamitrinib (GA mitochondrial matrix inhibitor), in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. The TRAMP mice receiving 3-week or 5-week systemic treatment with Gamitrinib were evaluated for localised or metastatic prostate cancer, prostatic intraepithelial neoplasia (PIN) or localised inflammation using magnetic resonance imaging, histology and immunohistochemistry. Treatment safety was assessed histologically in organs collected at the end of treatment. The effect of Gamitrinib on mitochondrial dysfunction was studied in RM1 cells isolated from TRAMP tumours.

RESULTS: Systemic administration of Gamitrinib to TRAMP mice inhibited the formation of localised prostate tumours of neuroendocrine or adenocarcinoma origin, as well as metastatic prostate cancer to abdominal lymph nodes and liver. The Gamitrinib treatment had no effect on PIN or prostatic inflammation, and caused no significant animal weight loss or organ toxicity. Mechanistically, Gamitrinib triggered acute mitochondrial dysfunction in RM1 cells, with loss of organelle inner membrane potential and release of cytochrome-c in the cytosol.

CONCLUSIONS: The Gamitrinib has pre-clinical activity and favourable tolerability in a genetic model of localised and metastatic prostate cancer in immunocompetent mice. Selective targeting of mitochondrial Hsp90 could provide novel molecular therapy for patients with advanced prostate cancer.

Rights and Permissions

Citation: Br J Cancer. 2011 Feb 15;104(4):629-34. Epub 2011 Feb 1. Link to article on publisher's site

Related Resources

Link to Article in PubMed

PubMed ID

21285984