UMMS Affiliation

Department of Quantitative Health Sciences

Publication Date


Document Type



Biostatistics | Epidemiology | Health Information Technology | Health Services Research


Web-delivered trials are an important component in eHealth services. These trials, mostly behavior-based, generate big heterogeneous data that are longitudinal, high dimensional with missing values. Unsupervised learning methods have been widely applied in this area, however, validating the optimal number of clusters has been challenging. Built upon our multiple imputation (MI) based fuzzy clustering, MIfuzzy, we proposed a new multiple imputation based validation (MIV) framework and corresponding MIV algorithms for clustering big longitudinal eHealth data with missing values, more generally for fuzzy-logic based clustering methods. Specifically, we detect the optimal number of clusters by auto-searching and -synthesizing a suite of MI-based validation methods and indices, including conventional (bootstrap or cross-validation based) and emerging (modularity-based) validation indices for general clustering methods as well as the specific one (Xie and Beni) for fuzzy clustering. The MIV performance was demonstrated on a big longitudinal dataset from a real web-delivered trial and using simulation. The results indicate MI-based Xie and Beni index for fuzzy-clustering are more appropriate for detecting the optimal number of clusters for such complex data. The MIV concept and algorithms could be easily adapted to different types of clustering that could process big incomplete longitudinal trial data in eHealth services.


UMCCTS funding, Big data, Fuzzy clustering, Longitudinal trial, Missing data, Multiple imputation, Validation

Rights and Permissions

This is the authors' final, peer-reviewed version of the article as prepared for publication in: J Med Syst. 2016 Jun;40(6):146. doi: 10.1007/s10916-016-0499-0. First published online 2016 Apr 28. The final publication is available at Springer via Posted with publisher's permission.

Journal/Book/Conference Title

Journal of medical systems

PubMed ID


Related Resources

Link to article in PubMed



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.