UMMS Affiliation

Program in Gene Function and Expression; Program in Molecular Medicine

Date

10-19-2007

Document Type

Article

Medical Subject Headings

*Adenoma, Islet Cell; Animals; Cadherins; Cell Movement; Cell Shape; Disease Models, Animal; *Disease Progression; *Gene Transfer Techniques; Genetic Vectors; Humans; Islets of Langerhans; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Transgenic; *Neoplasm Invasiveness; Neoplasm Metastasis; Rats; bcl-X Protein

Disciplines

Genetics and Genomics

Abstract

Tumors develop through multiple stages, implicating multiple effectors, but the tools to assess how candidate genes contribute to stepwise tumor progression have been limited. We have developed a novel system in which progression of phenotypes in a mouse model of pancreatic islet cell tumorigenesis can be used to measure the effects of genes introduced by cell-type-specific infection with retroviral vectors. In this system, bitransgenic mice, in which the rat insulin promoter (RIP) drives expression of both the SV40 T antigen (RIP-Tag) and the receptor for subgroup A avian leukosis virus (RIP-tva), are infected with avian viral vectors carrying cDNAs encoding candidate progression factors. Like RIP-Tag mice, RIP-Tag; RIP-tva bitransgenic mice develop isolated carcinomas by approximately 14 wk of age, after progression through well-defined stages that are similar to aspects of human tumor progression, including hyperplasia, angiogenesis, adenoma, and invasive carcinoma. When avian retroviral vectors carrying a green fluorescent protein marker were introduced into RIP-Tag; RIP-tva mice by intra-cardiac injection at the hyperplastic or early dysplastic stage of tumorigenesis, approximately 20% of the TVA-positive cells were infected and expressed green fluorescent proteins as measured by flow cytometry. Similar infection with vectors carrying cDNA encoding either of two progression factors, a dominant-negative version of cadherin 1 (dnE-cad) or Bcl-xL, accelerated the formation of islet tumors with invasive properties and pancreatic lymph node metastasis. To begin studying the mechanism by which Bcl-xL, an anti-apoptotic protein, promotes invasion and metastasis, RIP-Tag; RIP-tva pancreatic islet tumor cells were infected in vitro with RCASBP-Bcl-xL. Although no changes were observed in rates of proliferation or apoptosis, Bcl-xL altered cell morphology, remodeled the actin cytoskeleton, and down-regulated cadherin 1; it also induced cell migration and invasion, as evaluated using two-chamber transwell assays. In addition, myosin Va was identified as a novel Bcl-xL-interacting protein that might mediate the effects of Bcl-xL on tumor cell migration and invasion.

Rights and Permissions

Citation: PLoS Biol. 2007 Oct 16;5(10):e276. Link to article on publisher's site

Related Resources

Link to Article in PubMed

PubMed ID

17941720

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.