Title

Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

UMMS Affiliation

Program in Gene Function and Expression; Department of Biochemistry and Molecular Pharmacology; Program in Bioinformatics and Integrative Biology

Date

6-16-2007

Document Type

Article

Medical Subject Headings

Chromatin; Chromatin Immunoprecipitation; Conserved Sequence; DNA Replication; Evolution, Molecular; Exons; Genetic Variation; Genome, Human; *Genomics; Heterozygote; Histones; Humans; Pilot Projects; Protein Binding; RNA, Messenger; RNA, Untranslated; Regulatory Sequences, Nucleic Acid; Transcription Factors; Transcription Initiation Site; Transcription, Genetic

Disciplines

Genetics and Genomics

Abstract

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

Rights and Permissions

Citation: Nature. 2007 Jun 14;447(7146):799-816. Link to article on publisher's site.

Comments

Job Dekker and Zhiping Weng are part of the ENCODE Project Consortium.

Related Resources

Link to Article in PubMed