Title

Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s): major differences in selective enantiomer formation by various P450 isoforms

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Date

11-16-2002

Document Type

Article

Subjects

Cytochrome P-450 Enzyme System; Endocrine System; Humans; Insecticides; Isoenzymes; Methoxychlor; Microsomes, Liver; Stereoisomerism

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

Methoxychlor, a currently used pesticide that in mammals elicits proestrogenic/estrogenic activity and reproductive toxicity, has been classified as a prototype endocrine disruptor. Methoxychlor is prochiral, and its metabolites 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M); 1,1,1-trichloro- 2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M); and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M) are chiral; whereas 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M) is achiral. These metabolites are formed during methoxychlor incubation with liver microsomes or recombinant cytochrome p450s (rp450s). Since methoxychlor-metabolite enantiomers may have different estrogenic/antiestrogenic/antiandrogenic activities than corresponding racemates, the possibility that p450s preferentially generate or use R or S enantiomers, was examined. Indeed, rCYP1A2 and r2A6 mono-demethylated methoxychlor primarily into (R)-mono-OH-M at 91 and 75%, respectively, whereas rCYP1A1, 2B6, 2C8, 2C9, 2C19, and 2D6 formed the (S)-enantiomer at 69, 66, 75, 95, 96, and 80%, respectively. However, rCYP3A4, 3A5, and 2B1(rat) weakly demethylated methoxychlor without enantioselectivity. Human liver microsomes generated (S)-mono-OH-M (77-87%), suggesting that CYP1A2 and 2A6 display only minor catalytic contribution. P450 inhibitors demonstrated that CYP2C9 and possibly 2C19 are major hepatic catalysts forming (S)-mono-OH-M, and CYP1A2 is primarily involved in forming the (R)-mono-OH-M. Demethylation rate of (S)-mono-OH-M versus (R)-mono-OH-M forming achiral bis-OH-M by rCYP1A2 was 97/3, compared with 15/85 and 17/83 for rCYP2C9 and 2C19, respectively, indicating opposite substrate enantioselectivity of rCYP1A2 versus 2C9 and 2C19. Also, rCYP1A2 preferentially O-demethylated (R)-catechol-M into (R)-tris-OH-M (at 80%), contrasting r2C9 and r2C19 that yielded (S)-tris-OH-M at 80 and 77%, respectively. Ortho-hydroxylation of mono-OH-M into catechol-M and bis-OH-M into tris-OH-M was primarily by 3A4 and was not enantioselective. In conclusion, enantiomeric abundance of methoxychlor metabolites depends on the relative catalytic activity of the hepatic p450 isoforms.

Rights and Permissions

Citation: Drug Metab Dispos. 2002 Dec;30(12):1329-36.

Related Resources

Link to Article in PubMed

Journal Title

Drug metabolism and disposition: the biological fate of chemicals

PubMed ID

12433799