PubMed ID

10446985

UMMS Affiliation

Department of Cell Biology

Date

8-14-1999

Document Type

Article

Subjects

Animals; Bone Neoplasms; Calcification, Physiologic; Calcium; Cell Count; *Cell Cycle; *Cell Cycle Proteins; Cell Differentiation; Cell Division; Cells, Cultured; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cyclins; DNA; Mice; Mice, Knockout; Microtubule-Associated Proteins; Neoplasm Proteins; Osteoblasts; Osteosarcoma; Rats; Skull; Stromal Cells; Tumor Cells, Cultured; *Tumor Suppressor Proteins

Disciplines

Cell Biology

Abstract

The cyclin-dependent kinase (cdk) inhibitors are key regulators of cell cycle progression. p27 and p21 are members of the Cip/Kip family of cdk inhibitors and regulate cell growth by inactivating cell cycle stage-specific CDK-cyclin complexes. Because down-regulation of osteoprogenitor proliferation is a critical step for osteoblast differentiation, we investigated expression of p27 and p21 during development of the osteoblast phenotype in rat calvarial osteoblasts and in proliferating and growth-inhibited osteosarcoma ROS 17/2.8 cells. Expression of these proteins indicates that p21, which predominates in the growth period, is related to proliferation control. p27 levels are maximal postproliferatively, suggesting a role in the transition from cell proliferation to osteoblast differentiation. We directly examined the role of p27 during differentiation of osteoprogenitor cells derived from the bone marrow (BM) of p27-/- mice. BM cells from p27 null mice exhibited increased proliferative activity compared with BM cells from wild-type mice and formed an increased number and larger size of osteoblastic colonies, which further differentiated to the mineralization stage. Although p27-/- adherent marrow cells proliferate faster, they retain competency for differentiation, which may result, in part, from observed higher p21 levels compared with wild type. Histological studies of p27-/- bones also showed an increased cellularity in the marrow cavity compared with the p27+/+. The increased proliferation in bone does not lead to tumorigenesis, in contrast to observed adenomas in the null mice. Taken together, these findings indicate that p27 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in bone cells.

Rights and Permissions

Citation: Cancer Res. 1999 Aug 1;59(15):3705-11.

Related Resources

Link to article in PubMed

Included in

Cell Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.