UMMS Affiliation

Department of Molecular, Cell and Cancer Biology

Publication Date

7-24-2017

Document Type

Article

Disciplines

Cellular and Molecular Physiology

Abstract

Robust mitochondrial respiration provides energy to support physical performance and physiological well-being, whereas mitochondrial malfunction is associated with various pathologies and reduced longevity. In the current study, we tested whether myricetin, a natural flavonol with diverse biological activities, may impact mitochondrial function and longevity. The mice were orally administered myricetin (50 mg/kg/day) for 3 weeks. Myricetin significantly potentiated aerobic capacity in mice, as evidenced by their increased running time and distance. The elevated mitochondrial function was associated with induction of genes for oxidative phosphorylation and mitochondrial biogenesis in metabolically active tissues. Importantly, myricetin treatment led to decreased PGC-1alpha acetylation through SIRT1 activation. Furthermore, myricetin significantly improved the healthspan and lifespan of wild-type, but not Sir-2.1-deficient, C. elegans. These results demonstrate that myricetin enhances mitochondrial activity, possibly by activating PGC-1alpha and SIRT1, to improve physical endurance, strongly suggesting myricetin as a mitochondria-activating agent.

Keywords

Ageing, Energy metabolism

Rights and Permissions

© The Author(s) 2017. Open Access - This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

DOI of Published Version

10.1038/s41598-017-05303-2

Source

Sci Rep. 2017 Jul 24;7(1):6237. doi: 10.1038/s41598-017-05303-2. Link to article on publisher's site

Journal/Book/Conference Title

Scientific reports

Comments

Full author list omitted for brevity. For the full list of authors, see article.

Related Resources

Link to Article in PubMed

PubMed ID

28740165

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.